Читаем Социология вещей (сборник статей) полностью

Приведенный пример иллюстрирует два интересующих нас аспекта проблемы: во-первых, он показывает, что пространственность – это конвенция; во-вторых, что для адекватного ее описания одной евклидовой геометрии мало [201]. Кроме того, пример с окружностями показывает, как тесно связаны между собой вопросы пространственности и непрерывности объектов. При каких обстоятельствах объект может быть изменен (например, перемещен в пространстве относительно прочих объектов) без трансформации его формы? Этим вопросом занимается топология, как область математики, призванная исследовать способности различных фигур к трансформациям (и различные пространства, которые делают эти трансформации возможными). Соответственно, существует множество способов определения того, что будет считаться непрерывностью формы, и что – пространством.

Евклидово и неевклидово пространство, или «Что такое корабль»?

Как мы отметили выше, для европейско-американского здравого смысла наиболее очевидной формой пространства является пространство евклидово. Фигура здесь мыслится как нечто помещенное в систему координат, образованную тремя ортогональными осями, а объект полагается неизменным, если его координаты в трехмерном пространстве остаются постоянными относительно друг друга. Изменение – например, перемещение объекта с одного места на другое, перемещение относительно других объектов – не означает утраты гомеоморфизма, если только отношение координат остается прежним. Так, корабль остается тем же самым кораблем, если, плавая по морям, сохраняет свою форму как физическое тело. Однако акторно-сетевая теория работает с другой, гораздо менее очевидной формой пространственности. Зададимся вопросом: что составляет непрерывность формы объекта как сетевого единства? Объект остается тем же самым объектом, пока сохраняет свое место в устойчивой сети отношений с другими вещами.Следовательно, ответ на данный вопрос: стабильность порядка отношений. Чтобы можно было показать пальцем на объект и сказать: «это корабль» (причем, корабль нормально функционирующий): корпус, парус, мачта, снасти, руль, цейхгауз, команда, вода, ветер – все это и многое другое должно сохранять свои функциональныесвязи [202]. Все части должны быть на «своих местах» и делать свою работу. На языке акторно-сетевой теории можно сказать, что все элементы должны быть «включены» (enroll) и оставаться «включенными». Так что нормально функционирующий корабль заимствует силу ветра, легкость течения, энергию команды и все это заключает в себе самом.

Обратите внимание: в евклидовом пространстве корабль есть устойчивая совокупность ортогональных координат, описывающих положение кормы, носа, киля, мачты и парусов относительно друг друга; пока корабль плывет, все эти части образуют единое целое. В пространстве сетей корабль также представляет собой устойчивый и непрерывный объект, « сетевую форму», целостность которой зависит от позиций всех релевантных, связанных с ним объектов. Так поддерживается объектная сущность судна. Это означает, что корабли пространственно или топологически множественны, т. е. находятся одновременно и в евклидовом пространстве и в пространстве сетевых отношений. Корабли гомеоморфны в каждом из пространств, поскольку сохраняют свою форму в обоих: физически – в одном, функционально или синтаксически – в другом. Однако перемещаются эти объекты лишь в евклидовом пространстве, в пространстве сетей они неподвижны. Никакого изменения отношений между компонентами, образующими корабли как объекты, не происходит. А если происходит, значит, что-то не так, значит, их сетевая форма «разорвана». В то же время, именно неподвижность корабля в сетевом пространстве делает возможным его перемещение в пространстве евклидовом,позволяя ему без повреждений покрывать расстояние между Калькуттой и Лиссабоном.

Такова анатомия латуровского понятия «неизменной мобильности». Неизменность здесь относится к сетевому пространству, тогда как мобильность – атрибут пространства евклидова. Резюмируя, можно сказать, что объекты способны к перемещениям благодаря своей топологической комплексности, благодаря тому, что они существуют одновременно в различных пространственных системах и потому что произведены они как пересечения этих пространственностей. Забегая вперед и рискуя сделать чрезмерно поспешный вывод, уточним данное нами выше определение объекта: объекты представляют собой пересечения характеристик неизменности формы в разных топологиях [203].

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже