Дело не только в том, что гидроксилапатит на несколько порядков по твердости превосходит любые структуры из карбоната кальция, для разрушения которого органы, состоящие из гидроксилапатита, и предназначены (табл. 1). Например, у современных высших раков фосфат сосредоточен в клешнях или ногочелюстях, остальной панцирь — кальцитовый. И это не случайно: при сокращениях поперечно-полосатых мышечных волокон, позволяющих развивать ногочелюстям или всему телу запредельные скорости (скажем, рак-богомол проламывает или прокалывает защиту жертвы за 0,0002 с), в организме вырабатывается молочная кислота. Кислотность внутренней среды возрастает от 4 до 5, и скелет легко бы растворился, будь он известковым. Опыты на форели, которой вживляли в мышцы разные по составу пластинки, показали, что известковые импланты в отличие от фосфатных растворялись, стоило рыбе немного поплавать.
Вновь обратившись к ископаемой летописи, видим, что предки позвоночных были активно плавающими хищниками с фосфатными зубами, а позднее и другими элементами скелета. Их образу жизни мы — потомки этих первых хищников — и обязаны своей слаборастворимой, прочной и в то же время удивительно пластичной внутренней опорой. А скажем, ближайшие скелетные родственники позвоночных — иглокожие — предпочли облегчить себе жизнь, соорудив панцирь из Mg-кальцитовых пластинок. С тех пор и ползают неспешно по дну, не освоив ни суши, ни даже слегка опресненных водоемов.
Лишь к концу раннекембрийской эпохи появились животные со скелетом из обычного кальцита (рис. 17.6). То было не просто добавление еще одной минеральной разности к предыдущим, а, по сути, смена парадигм: одни животные с арагонитовым и Mg-кальцитовым скелетом заменили его на кальцитовый (некоторые моллюски), другие, весьма обильные до той поры (анабаритиды, археоциаты), полностью вымерли, и им на смену пришли новые группы с кальцитовым скелетом [трилобиты (Trilobita), «замковые» брахиоподы], третьи, видимо просто избавились от минерального скелета (с губками и кораллами такое периодически происходит). Литологические (состав первичных морских цементов, оолитов и солей) и геохимические данные (соотношение Са2+
/Mg2+-ионов) подсказывают, что в это время повысилось содержание углекислого газа в атмосфере и увеличился объем срединно-океанических хребтов. Поскольку воздушная оболочка Земли тесно взаимодействует с жидкой, то при росте содержания в атмосфере CO2 океан также насыщается этим газом. Реагируя с водой, газ образовывает нестойкую угольную кислоту, которая быстро распадается на ионы водорода и бикарбоната, а последний — на ионы карбоната и водорода:CO2
+ H2O ↔ H2CO3 ↔ H+ + HCO3— ↔ 2H+ + CO32–.Избыток протонов подкисляет морскую воду. Если, скажем, содержание в атмосфере двуокиси углерода повысится в два раза по отношению к доиндустриальному уровню (0,03 %) при современной температуре поверхностных вод (25 °C) и солености (35‰), то водородный показатель (pH) упадет с 8,16 до 7,92, а кислотность водной среды, соответственно, повысится. Вполне достаточно, чтобы насыщенность океана по отношению к арагониту понизилась с 4,2 до 2,8. Насыщенность, Ω, рассчитывается по формуле Ω = [Ca2+
] [CO32–]/K’, где K’ — объем растворяющегося минерала. Поскольку содержание в океане Ca2+ обычно в 20–30 раз превышает таковое CO32–, наиболее значимый количественный показатель здесь именно относительное изменение уровня CO32–. При повышении этого уровня арагонитовые, а также Mg-кальцитовые скелеты, если они плохо изолированы органическими оболочками, начинают растворяться еще при жизни своих хозяев. Впервые эпоха «массового растворения», связанная через парниковый эффект с наступлением теплой эры, случилась во второй половине кембрийского периода (и повторилась на рубеже пермского и триасового периодов). Коснулись эти события в основном водорослей, губок и кораллов, у которых скелеты не имеют достаточной степени защиты от повышенной кислотности.