Читаем Совершенная строгость. Григорий Перельман: гений и задача тысячелетия полностью

— Но ведь так все делают, — произношу я то, чего от меня, по всей видимости, ждут.

— Вот именно! Об этом и речь, — заключает радостно ерзающий на стуле Судаков.

Я видела, как проходят занятия в Петербургском математическом центре для одаренных детей — так теперь называется разросшийся кружок Сергея Рукшина, который посещают примерно двести детей в возрасте одиннадцати лет и старше. Как и группа Перельмана, они приходят на занятия дважды в неделю после школы. В конце каждого занятия (двухчасового для младших школьников, долгого, иногда до ночи — для старшеклассников) ученики получают домашнее задание. Рукшин утверждает, что один из его уникальных методов заключается в том, чтобы правильно подобрать задания. Наставник должен изучить несколько списков заданий и выбрать те, которые помогут ученикам достичь прогресса в течение следующих нескольких часов. Через три дня ученики приносят собственные решения, которые они объясняют ассистентам в течение первого часа занятий. На втором часу наставник записывает правильные решения на доске и объясняет их. С течением времени ученики начинают самостоятельно объяснять свои решения остальной группе.

Я наблюдала, как младшие ученики сражались со следующей задачей: "В классной комнате находятся шесть человек. Докажите, что среди них должны быть по меньшей мере трое, ни один из которых не знает другого, или же трое, знакомые друг с другом". Ассистенты советуют детям нарисовать следующую схему:


Двое из шести детей, корпевших над задачей, поняли, что рисунок можно дополнить одним из трех способов:

или:

Задача, с которой успешно справились эти двое, заключалась в том, чтобы графическим, а потому неопровержимым путем показать, что должно быть по крайней мере трое людей, ни один из которых не знает другого, или же, напротив, знакомых друг с другом. Слушать детей, впервые пытавшихся артикулировать свои мысли, было мучительно.

Математикам эта задача известна как головоломка о вечеринке. В более общем виде она выглядит так: сколько людей следует пригласить на вечеринку, чтобы по крайней мере т гостей оказались знакомы друг с другом или по крайней мере п гостей не были знакомы друг с другом. Эта головоломка является частным случаем теории Рамсея — системы теорем,сформулированных английским математиком Фрэнком Рамсеем. Большинство подобных задач касаются числа элементов, нужного, чтобы удовлетворять определенным условиям. Сколько детей должно быть у женщины, чтобы двое из них наверняка оказались одного пола? Трое. Сколько людей должно прийти на вечеринку, чтобы по крайней мере трое из них не знали (или, напротив, знали) друг друга? Шестеро. Сколько голубей нужно, чтобы по меньшей мере в одном гнезде оказались два или более голубей? На одного больше, чем число гнезд.

Дети — по крайней мере некоторые — со временем узнают о теории Рамсея. Сейчас же они учатся смотреть на мир так, чтобы заинтересоваться этой теорией и вообще увидеть порядок в неупорядоченном мире. Для подавляющего большинства школьники или гости вечеринки — только люди. Математики же видят в них элементы структуры, а в их взаимоотношениях — закономерности. Большинство учителей математики, кажется, верят в то, что некоторые дети изначально предрасположены к поиску взаимосвязей. Выделив этих детей, их нужно обучать и развивать их странную способность видеть треугольники и шестиугольники там, где все остальные видят просто вечеринку.

"Это мое ноу-хау, — заявил мне Рукшин. — Я понял тридцать лет назад, что необходимо выслушивать каждого ребенка, который считает, что сумел решить задачу". В других маткружках дети рассказывали о своих вариантах решения у доски, и дискуссия заканчивалась после первого же правильного ответа. Тактика же Рукшина заключается в том, чтобы каждый ребенок рассказал о своем варианте решения, о своих удачах, трудностях и ошибках.

Это, возможно, наиболее трудоемкий метод обучения из существующих: ни один ученик и ни один наставник не может остаться в стороне. "Мы учим детей говорить, а преподавателей — понимать их невнятную речь и невнятные мысли".

Пока я слушала Рукшина и наблюдала за его учениками, я пыталась сформулировать свое впечатление от этих занятий. Дети увлечены сильнее, чем я когда-либо видела на занятиях других математических, шахматных, спортивных секций, но и отношения между ними напряженней. Я потратила много месяцев на то, чтобы подобрать аналогию: занятия по методу Рукшина походят на сеансы групповой терапии.

Фокус в том, чтобы в конце концов каждый ребенок объяснил свое решение задачи всей группе. Математика для этих детей — самая увлекательная на свете вещь (иного Рукшин, похоже, и не приемлет). Они проводят большую часть своего свободного времени, размышляя над задачами, вкладывая в их решение всю свою энергию, все силы — совсем как добросовестный член анонимной группы взаимопомощи, который в перерывах между собраниями выполняет предписания тренера. На занятиях кружка дети открывают душу людям, которые так много значат для них, рассказывая о том, как они пришли к решению.

Перейти на страницу:

Похожие книги

100 знаменитых анархистов и революционеров
100 знаменитых анархистов и революционеров

«Благими намерениями вымощена дорога в ад» – эта фраза всплывает, когда задумываешься о судьбах пламенных революционеров. Их жизненный путь поучителен, ведь революции очень часто «пожирают своих детей», а постреволюционная действительность далеко не всегда соответствует предреволюционным мечтаниям. В этой книге представлены биографии 100 знаменитых революционеров и анархистов начиная с XVII столетия и заканчивая ныне здравствующими. Это гении и злодеи, авантюристы и романтики революции, великие идеологи, сформировавшие духовный облик нашего мира, пацифисты, исключавшие насилие над человеком даже во имя мнимой свободы, диктаторы, террористы… Они все хотели создать новый мир и нового человека. Но… «революцию готовят идеалисты, делают фанатики, а плодами ее пользуются негодяи», – сказал Бисмарк. История не раз подтверждала верность этого афоризма.

Виктор Анатольевич Савченко

Биографии и Мемуары / Документальное
12 Жизнеописаний
12 Жизнеописаний

Жизнеописания наиболее знаменитых живописцев ваятелей и зодчих. Редакция и вступительная статья А. Дживелегова, А. Эфроса Книга, с которой начинаются изучение истории искусства и художественная критика, написана итальянским живописцем и архитектором XVI века Джорджо Вазари (1511-1574). По содержанию и по форме она давно стала классической. В настоящее издание вошли 12 биографий, посвященные корифеям итальянского искусства. Джотто, Боттичелли, Леонардо да Винчи, Рафаэль, Тициан, Микеланджело – вот некоторые из художников, чье творчество привлекло внимание писателя. Первое издание на русском языке (М; Л.: Academia) вышло в 1933 году. Для специалистов и всех, кто интересуется историей искусства.  

Джорджо Вазари

Биографии и Мемуары / Искусство и Дизайн / Искусствоведение / Культурология / Европейская старинная литература / Образование и наука / Документальное / Древние книги
Русская печь
Русская печь

Печное искусство — особый вид народного творчества, имеющий богатые традиции и приемы. «Печь нам мать родная», — говорил русский народ испокон веков. Ведь с ее помощью не только топились деревенские избы и городские усадьбы — в печи готовили пищу, на ней лечились и спали, о ней слагали легенды и сказки.Книга расскажет о том, как устроена обычная или усовершенствованная русская печь и из каких основных частей она состоит, как самому изготовить материалы для кладки и сложить печь, как сушить ее и декорировать, заготовлять дрова и разводить огонь, готовить в ней пищу и печь хлеб, коптить рыбу и обжигать глиняные изделия.Если вы хотите своими руками сложить печь в загородном доме или на даче, подробное описание устройства и кладки подскажет, как это сделать правильно, а масса прекрасных иллюстраций поможет представить все воочию.

Владимир Арсентьевич Ситников , Геннадий Федотов , Геннадий Яковлевич Федотов

Биографии и Мемуары / Хобби и ремесла / Проза для детей / Дом и досуг / Документальное