Читаем Совершенная строгость. Григорий Перельман: гений и задача тысячелетия полностью

Современные люди, знающие, что Земля — это шар и что его поверхность обладает [положительной] кривизной, живут в трехмерном мире. Но есть и четвертое измерение — время. Однако, поскольку мы не умеем перемещаться во времени, мы не в состоянии обнаружить трехмерную природу собственного существования так, как мы можем следить за животными, живущими в двух измерениях. Мы ограничиваемся исследованием пространства вокруг нас и строим догадки, как все это выглядит из точки, о которой мы можем только догадываться — но попасть в нее или даже вообразить ее мы не можем. В этом заключается суть гипотезы Пуанкаре: последний универсалист предположил, что Вселенная имеет форму трехмерной сферы.

Во время моей работы над книгой один молодой математик давал мне уроки топологии, терпеливо наблюдая, как я мучительно пыталась закрутить ум в трубочку, чтобы постичь основы этой науки. Он презрительно морщился всякий раз, когда речь шла о том, что гипотеза Пуанкаре описывает форму Вселенной. Если говорить точнее, доказательство гипотезы Пуанкаре может оказать неоценимую помощь науке в изучении формы и свойств Вселенной. Но не это занимало Григория Перельмана. Перед ним стояла четко сформулированная еще сто лет назад задача, которую до сих пор никто не решил.

Так же, как моего наставника и многих других математиков, с которыми мне довелось пообщаться, Перельмана нисколько не заботила физическая форма Вселенной или опыт населяющих ее людей. Математика предоставила ему возможность жить среди абстракций в его собственном воображении, и именно там надлежало решить задачу.

В 1904 году Анри Пуанкаре напечатал статью о трехмерных многообразиях. Многообразие — это объект или пространство (существующее в воображении математика, но не обязательно в реальности), которые могут быть разделены на множество отдельных окрестностей. Каждая отдельно взятая окрестность имеет обычную евклидову геометрию, однако все вместе окрестности представляют собой нечто гораздо более сложное.

Лучший пример многообразия — поверхность нашей планеты, запечатленная на нескольких картах, каждая из которых изображает небольшой фрагмент поверхности. Вообразите, например, карту Манхэттена: это несомненно евклидово пространство. Если карты сложить в атлас, то параллельные прямые на них по-прежнему не будут пересекаться, а сумма углов построенных треугольников не будет превышать 180°. Но если бы мы захотели построить из набора этих карт модель Земли, то сначала получили бы многогранный объект, напоминающий дискотечный зеркальный шар. Потом мы сгладили бы углы и в результате получили глобус, отражающий сложную кривизну планеты. Если мы продолжим на глобусе линии Первой и Второй авеню, то они пересекутся — в отличие от евклидова пространства. Эти понятия — карты, атласы, многообразия — являются основой топологии.

Одно многообразие отличается от другого тем, что имеет отверстие (или более чем одно отверстие). Для тополога шар, шкатулка, булка и пузырь суть одно и то же, а бублик — нет. Если воображаемую резиновую ленту (не менее важный для топологического воображения инструмент, чем атлас) надеть на воображаемый объект, она будет сжиматься.

Если обернуть очень тугую ленту вокруг шара, она соскользнет, причем вне зависимости от того, на какую часть шара она была надета. С бубликом все иначе: будучи продетой сквозь отверстие, резиновая лента, какой бы тугой она ни была, не соскользнет. Резиновая лента соскользнет с шара, шкатулки, булки или пузыря без отверстий, и это означает, что они схожи, или, говоря языком топологии, диффеоморфны друг другу (это означает, что эти объекты можно трансформировать один в другой).

Это подводит нас к вопросу, в чем заключается гипотеза Пуанкаре. Чуть больше ста лет назад Пуанкаре задал невинный вопрос: если трехмерное многообразие гладкое и односвязное, то диффеоморфно ли оно трехмерной сфере? Гладкое многообразие — это нескрученное многообразие (в самом деле, скомканные листы осложнили бы работу с картами). Односвязность предполагает отсутствие в объекте отверстий. Мы знаем, что такое диффеоморфность. Мы также знаем, что значит трехмерное. Итак, трехмерное многообразие — это поверхность четырехмерного объекта.

Теперь разберем, что такое сфера. Это множество точек, равноудаленных от данной фиксированной точки, называемой центром. Одномерная сфера, знакомая нам по школьному курсу геометрии, представляет собой эту совокупность точек, расположенных в двухмерном пространстве, то есть на плоскости. Двухмерная сфера — поверхность шара — это совокупность точек в трехмерном пространстве.

Сферы особенно интересны топологам оттого, что относятся к гиперповерхностям, то есть объектам, которые обладают столькими размерностями, сколько возможно в данном пространстве (одно измерение в двухмерном пространстве, два измерения — в трехмерном и так далее). Трехмерная сфера, свойства которой так занимали Анри Пуанкаре, — это поверхность четырехмерного шара. Мы не в состоянии вообразить этот объект — и тем не менее, возможно, живем в нем.

Перейти на страницу:

Похожие книги

100 знаменитых анархистов и революционеров
100 знаменитых анархистов и революционеров

«Благими намерениями вымощена дорога в ад» – эта фраза всплывает, когда задумываешься о судьбах пламенных революционеров. Их жизненный путь поучителен, ведь революции очень часто «пожирают своих детей», а постреволюционная действительность далеко не всегда соответствует предреволюционным мечтаниям. В этой книге представлены биографии 100 знаменитых революционеров и анархистов начиная с XVII столетия и заканчивая ныне здравствующими. Это гении и злодеи, авантюристы и романтики революции, великие идеологи, сформировавшие духовный облик нашего мира, пацифисты, исключавшие насилие над человеком даже во имя мнимой свободы, диктаторы, террористы… Они все хотели создать новый мир и нового человека. Но… «революцию готовят идеалисты, делают фанатики, а плодами ее пользуются негодяи», – сказал Бисмарк. История не раз подтверждала верность этого афоризма.

Виктор Анатольевич Савченко

Биографии и Мемуары / Документальное
12 Жизнеописаний
12 Жизнеописаний

Жизнеописания наиболее знаменитых живописцев ваятелей и зодчих. Редакция и вступительная статья А. Дживелегова, А. Эфроса Книга, с которой начинаются изучение истории искусства и художественная критика, написана итальянским живописцем и архитектором XVI века Джорджо Вазари (1511-1574). По содержанию и по форме она давно стала классической. В настоящее издание вошли 12 биографий, посвященные корифеям итальянского искусства. Джотто, Боттичелли, Леонардо да Винчи, Рафаэль, Тициан, Микеланджело – вот некоторые из художников, чье творчество привлекло внимание писателя. Первое издание на русском языке (М; Л.: Academia) вышло в 1933 году. Для специалистов и всех, кто интересуется историей искусства.  

Джорджо Вазари

Биографии и Мемуары / Искусство и Дизайн / Искусствоведение / Культурология / Европейская старинная литература / Образование и наука / Документальное / Древние книги
Русская печь
Русская печь

Печное искусство — особый вид народного творчества, имеющий богатые традиции и приемы. «Печь нам мать родная», — говорил русский народ испокон веков. Ведь с ее помощью не только топились деревенские избы и городские усадьбы — в печи готовили пищу, на ней лечились и спали, о ней слагали легенды и сказки.Книга расскажет о том, как устроена обычная или усовершенствованная русская печь и из каких основных частей она состоит, как самому изготовить материалы для кладки и сложить печь, как сушить ее и декорировать, заготовлять дрова и разводить огонь, готовить в ней пищу и печь хлеб, коптить рыбу и обжигать глиняные изделия.Если вы хотите своими руками сложить печь в загородном доме или на даче, подробное описание устройства и кладки подскажет, как это сделать правильно, а масса прекрасных иллюстраций поможет представить все воочию.

Владимир Арсентьевич Ситников , Геннадий Федотов , Геннадий Яковлевич Федотов

Биографии и Мемуары / Хобби и ремесла / Проза для детей / Дом и досуг / Документальное