Хотя сравнение компьютера и головного мозга, в общем, лишено смысла, замечу, что показатели Summit слегка превосходят емкость человеческого мозга, который, как было сказано, имеет порядка 1015 синапсов и «цикл» примерно в 0,01 секунды с теоретическим максимумом около 1017 «операций» в секунду. Самым существенным различием является потребление энергии: Summit использует примерно в миллион раз больше энергии.
Предполагается, что закон Мура, эмпирическое наблюдение, что количество электронных компонентов чипа удваивается каждые два года, продолжит выполняться примерно до 2025 г., хотя и немного медленнее. Сколько-то лет скорости ограничены большим количеством тепла, выделяемого при быстрых переключениях кремниевых транзисторов; более того, невозможно значительно уменьшить размеры цепей, поскольку провода и соединения (на 2019 г.) уже не превышают длины в 25 атомов и толщины от пяти до десяти атомов. После 2025 г. нам придется использовать более экзотические физические явления, в том числе устройства отрицательной емкости[42], одноатомные транзисторы, графеновые нанотрубки и фотонику, чтобы поддержать действие закона Мура (или того, что придет ему на смену).
Вместо того чтобы просто ускорять компьютеры общего назначения, есть другая возможность — строить специализированные устройства, ориентированные на выполнение лишь одного класса вычислений. Например, тензорные процессоры (TPU) Google разработаны для расчетов, необходимых для определенных алгоритмов машинного обучения. Один TPU-модуль (версии 2018 г.) выполняет порядка 1017 вычислений в секунду — почти столько же, сколько машина Summit, — но использует примерно в 100 раз меньше энергии и имеет в 100 раз меньший размер. Даже если технология чипов, на которой это основано, останется в общем неизменной, машины этого типа можно попросту делать все больше и больше, чтобы обеспечить ИИ-системы огромной вычислительной мощностью.
Квантовые вычисления отличаются принципиально. Они используют необычные свойства волновых функций квантовой механики для получения потрясающего результата: в два раза увеличив количество квантового оборудования, вы можете
К 2019 г. созданы экспериментальные прототипы маленького квантового процессора, оперирующего несколькими десятками кубитов, но пока нет интересных вычислительных задач, в которых квантовый процессор оказывается быстрее классического компьютера. Главной проблемой является декогерентность — такие процессы, как тепловой шум, разрушающие когерентность многокубитной волновой функции. Специалисты по квантовым вычислениям надеются решить проблему декогерентности путем создания цепи исправления ошибок, чтобы любая ошибка, возникающая в ходе вычислений, быстро обнаруживалась и исправлялась с использованием своего рода процесса голосования. К сожалению, системы исправления ошибок требуют намного больше кубитов для выполнения той же работы; если квантовая машина с несколькими сотнями идеальных кубитов была бы очень мощной по сравнению с существующими классическими компьютерами, нам, вероятно, потребуется несколько миллионов кубитов, исправляющих ошибки, чтобы практически осуществить эти вычисления. Переход от нескольких десятков к нескольким миллионам кубитов займет несколько лет. Если нам в конце концов удастся решить такую задачу, это полностью изменит наши возможности в использовании вычислений по методу «грубой силы»[45]. Вместо того чтобы ждать настоящих концептуальных прорывов в области ИИ, мы, возможно, сумеем использовать мощность квантовых вычислений, чтобы обойти ряд барьеров, с которыми сталкиваются нынешние «неинтеллектуальные» алгоритмы.
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии