1. Первый этап заключается в расщеплении молекул глюкозы на две молекулы пировиноградной кислоты. Пировиноградная кислота выполняет важную метаболическую функцию, от её действия напрямую зависит работа печени. Доказано, что данное соединение содержится в некоторых фруктах, ягодах и даже в мёде; её успешно применяют в косметологии, как способ борьбы с отмершими клетками эпителия (гоммаж). Также, в результате реакции может образоваться лактат (молочная кислота), которая имеется в поперечнополосатой мускулатуре, крови (точнее в эритроцитах) и мозге человека. Важный элемент в работе сердца и нервной системы. Происходит реакция декарбоксилирования, то есть отщепление карбоксильной (кислотной) группы аминокислот, в процессе которой образуется кофермент А - он выполняет функцию транспортировки углерода в различных обменных процессах. При соединении с молекулой оксалоацетата (щавелевой кислоты) получается цитрат, который фигурирует в буферных обменах, т. е. "на себе" переносит полезные вещества в нашем организме и помогает им усваиваться. На данном этапе кофермент А полностью высвобождается, плюс, мы получаем молекулу воды. Данная реакция является необратимой.
2. Вторая стадия характеризуется дегидрированием (отщеплением молекул воды) от цитрата, что дают нам цис-аконитат (аконитовая кислота), который помогает в образовании изоцитрата. По концентрации данного вещества, например, можно определить качество фруктов или фруктового сока.
3. Третий этап. Здесь от изолимонной кислоты отделяется карбоксильная группа, что в результате даёт кетоглутаровую кислоту. Альфа-кетоглутарат участвует в улучшении всасывания аминокислот из поступающей пищи, улучшает метаболизм и предупреждает появление стрессов. Также образовывается NADH - вещество необходимое для нормального протекания окислительных и обменных процессов в клетках.
4. На следующем этапе при отделении карбоксильной группы образуется сукцинил-КоА, который является важнейшим элементом в образовании анаболических веществ (белков и т.д.). Возникает процесс гидролиза (соединение с молекулой воды) и высвобождается энергия АТФ.
5. На последующих стадиях цикл начнёт замыкаться, т.е. сукцинат снова потеряет молекулу воды, что превращает его в фумарат (вещество способствующее переносу водорода к коферментам). К фумарату присоединяется вода и образуется малат (яблочная кислота), она окисляется, что снова приводит к появлению оксалоацетата. Оксалоацетата, в свою очередь, выступает в роли катализатора в вышеуказанных процессах, его концентрациях в митохондриях клеток постоянна, но, при этом, довольна низкая.
Таким образом, можно выделить важнейшие функции данного цикла:
1. энергетическая;
2. анаболическая (синтез органических веществ - аминокислот, жирных белков и т.д.);
3. катаболическая: превращение некоторых веществ в катализаторы - элементы, способствующие выработке энергии;
4. транспортная, в основном происходит транспортировка водорода, участвующего в дыхании клеток.
Как могла возникнуть такая сложная система? Есть некоторые ученые, считающие, что жизнь на Землю была занесена из Космоса. Эта концепция называется теорией панспермии. Они считают, что на Земле было слишком мало времени, чтобы возникла такая сложная система, как живая клетка. И в качестве иллюстрации абсурдности подобных предположений проводят следующее сравнение. Дескать, у обезьяны, усаженной за пишущую машинку, больше шансов отпечатать сонет Шекспира, чем у жизни возникнуть на Земле из аминокислот, нуклеотидов и других веществ, из которых состоит клетка. Но у данного сравнения есть слабое место. Рассуждая по аналогии, приведем следующий пример. Шекспир, в отличие от обезьяны, складывал свои сонеты не из отдельных букв. В его распоряжении были готовые сюжеты, которые он заимствовал из других произведений, он пользовался английской грамматикой, знал правила драматургии. То есть он творил не из отдельных элементов, а из готовых блоков.