Читаем Современная космология: философские горизонты полностью

Несмотря на столь значительный успех инфляционной космологии, как уже говорилось выше, она сама ещё далека от завершения и находится в состоянии активной теоретической разработки. Одна из её серьёзных проблем — квантовые процессы, происходящие в высокоэнергетическом физическом вакууме, где и пространство, и время носят квантовый характер, и соответственно физические процессы происходят в масштабах, равных или меньших, чем квантовые (планковские) масштабы пространства (10-33 см) и времени (10-43 с). Необходима теория, которая описывала бы состояния, виды и формы материи в подобных масштабах и соответствующие физические процессы, приводящие к инфляционному расширению. Кроме кванто-вой теории поля, исследованием подобных состояний материи занимается и теория струн, к которой всё чаще «обращается» инфляционная космология. В результате этих «обращений» в научной литературе появился даже новый термин — «струнная космология» или «космология струн»[328]. Её задача — решать сугубо физические и даже в определённой мере «технические» проблемы, связанные, в первую очередь, с проблемой сингулярности и «механизмом» инфляции. Преимущества такого подхода заключаются в возможности использовать все специфические моменты теории струн и М-теории, в частности, многомерность пространства, а также свойства дуальности (особенно Т-дуальность). В самых общих чертах механизм инфляции может быть объяснён взаимодействием струн в многомерном пространстве, при котором три из десяти (или одиннадцати) измерений начинают экспоненциально расширяться, а другие остаются компактифицироваными на квантовом уровне. Существенную роль в компактификации одних измерений и раздувании других может играть и Т-дуальность, именно в силу своего свойства эквивалентности в описании физических процессов в масштабах r и 1/r для разных теорий струн. Принципиальное отсутствие в теории струн нулевых размеров, а также свойство Т-дуальности также может помочь в разрешении проблемы сингулярности. Взаимодействие космологии и теории струн (М-теории) носит взаимовыгодный характер. Не только теория струн «подсказывает» способы решения космологических проблем, но и космология выступает определённым эмпирическим «тестом» для теории струн. Это касается не только наблюдаемой «постинфляционной Вселенной», в том числе и различных астрофизических форм материи[329], но и полученных от наблюдений анизотропии реликтового излучения количественных «параметров» инфляции[330]. Однако все они носят характер именно ограничений, позволяющий выбирать из множества возможных теорий и подходов только некоторые. Говорить в настоящее время о том, что космология струн позволит в ближайшее время провести «решающее наблюдение», которое подтвердит или даже опровергнет какую-либо законченную теорию в её рамках, не представляется возможным. В целом в струнной космологии существуют только некоторые общие подходы и методологические наработки, фундаментальными прорывами она ещё похвастаться не может (как и в целом теория струн). Однако взаимодействие теории струн и космологии будет продолжаться, и надо надеяться, что рано или поздно, но результат будет получен.

Гораздо лучше в этом смысле обстоят дела с теми областями современной космологии, которые исследуют не далёкое прошлое, а настоящее нашей Вселенной, поскольку именно эта «часть» космологии богата эмпирическим материалом, который нуждается в теоретическом осмыслении. Речь идёт о проблеме скрытой массы и тёмной энергии.

Своими корнями эта проблема восходит ещё к первым работам Фридмана и его моделям, физическая реализация которых зависит от средней плотности материи во Вселенной (её отличия от критической плотности). Величина плотности, отнесённая к критической (относительная плотность равная . = /крит), является одним из основных космологических параметров современной космологии.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже