Назовем период существования Вселенной, в течение которого ее размеры изменялись от планковского до атомного, эпохой квантовой Вселенной или эпохой квантовой космологии. Поскольку мы начали обсуждение на уровне «простейших соображений», то и в этом случае выделение квантовой Вселенной в качестве определенного приближения является вполне допустимым. Такое подробное обсуждение в общем-то известных вещей нам было необходимо для того, чтобы показать важнейший для дальнейшего обсуждения момент: по крайней мере на определенном этапе своей эволюции Вселенная была квантовым объектом
1. Но тогда квантовая Вселенная как квантовый объект (квантовая система) должна обладать квантовой онтологией, описанной в разделе 1. Можно ли сказать, что наша Вселенная как целое действительно обладает всеми этими квантовыми особенностями бытия?Но это не единственный вариант понимания квантовой Вселенной. Согласно квантовой механике можно написать волновую функцию как для макроскопической экспериментальной установки с «котом Шредингера», так и для всей Вселенной.
Получается, что не только микроскопический, но и макроскопический и даже мегаскопический космологический уровень тоже являются квантовыми. С точки же зрения эвереттовского подхода квантовое описание является единственным и истинным, а все остальные — приближения, проекции, которые наше сознание воспринимает как классические миры[188]. С этой точки зрения Вселенная всегда была и остается квантовой. Но каков тогда смысл квантованности всего и вся во Вселенной? Являются ли, например, стол и Галактика квантовыми объек-тами? В частности, обладают ли они свойством корпускулярно-волнового дуализма? Движутся ли они бестраекторно и т. д.? Очевидно, что нет. И здесь в концептуальном плане не помогает точка зрения о том, что эти уровни — всего лишь приближения. В любом исследовании всегда очень важно не пропустить новый уровень эмерджентности — появления нового качества. Макро- и мегауровни физической реальности являются новыми качествами реальности, они обладают принципиально новыми фундаментальными свойствами, и описывать, например, жизнь социума с точки зрения КТП достаточно бессмысленно, если вообще возможно (практически). Хотя, сам социум состоит из элементарных квантовых объектов и именно их взаимодействия, в конечном счете, его и определяют. Возможно, одно из активно развиваемых направлений квантовой механики — теория декогеренции — сможет разрешить проблему появления макроскопических свойств и самих макрообъектов.И еще один вопрос, выяснение ответа на который может помочь пониманию того, что такое квантовая Вселенная: стремление понять природу квантовой Вселенной ведет к необходимости уточнить и углубить понимание того, что является квантовой
теорией. Некоторым этот вопрос кажется почти метафизическим. Для работающих физиков такой вопрос представляется несерьезным. Они настолько привыкли работать в рамках квантовой теории, настолько она хорошо описывает широчайший спектр физических явлений, что с точки зрения эффективности и прагматики попытки выяснять еще какой-то смысл квантованности считаются наивными. Однако философия науки нередко находит материал для исследований именно в таких «безнадежных» вопросах. И действительно, что же такое квантовая механика? Можно ли ее однозначно определить как теорию операторного анализа в гильбертовом пространстве? Или критерием для квантовой теории может служить наличие хороших правил квантования? Или, наконец, может быть квантовой можно называть именно ту теорию, в которой присутствует постоянная Планка, а физические величины квантованы? Или только все это вместе[189]? Естественно, что все эти неясности и нюансы только усложняют создание и понимание квантовой космологии. Для нашего дальнейшего анализа мы будем использовать понимание квантовой теории, в которой определяющую роль играет постоянная Планка и квантованность физических величин.Таким образом, по крайней мере, на некоторых этапах своей эволюции Вселенная как целое обладала квантовыми свойствами. С методологической точки зрения простой перенос любых существующих представлений на космологический уровень всегда ограничен, хотя в современной космологии подобное нередко происходит. Это тем более справедливо для ранней (квантовой) Вселенной. В космологической литературе часто приводятся расчеты моментов времени, температуры, размеров, плотности и т. д. Вселенной для различных стадий ее эволюции, буквально перенося макроскопические представления на соответствующий космологический уровень. При этом теряется качество этого уровня реальности, и выводы оказываются пригодными только к, так называемым, моделям «игрушечного мира» (toy-world).