В отличие от травоядных животных, которые съедают обычно лишь небольшую часть растения, многие хищные животные съедают свою добычу целиком; поэтому яды, служащие их потенциальным жертвам для защиты, часто приводят к куда более серьезным последствиям, чем простое кишечное расстройство. Чтобы хищникам было неповадно, животные яды должны оказывать действительно мощное воздействие. Так, например, яд, содержащийся в слизи на коже лягушек-древолазов или в мясе рыбы-ежа, вполне способен не просто убедить хищника предпочесть другой источник пищи, но и убить его.
В природе химическая гонка вооружений достигла своего апогея в изобретениях ядовитых животных, которые не просто содержат токсины в своих тканях, а обзавелись специальными анатомическими приспособлениями для того, чтобы вводить эти токсины непосредственно в организм других животных. Такие яды делятся на четыре типа:
Некоторые насекомые (осы, муравьи, пчелы) и рыбы (крылатка) используют яды, вводимые в организм противника, для защиты, но другие животные, например рыбоядные моллюски-конусы, пауки и змеи, применяют их для обездвиживания жертвы. Эти яды обычно представляют собой сложную смесь веществ, которая способна оказывать на жертву разностороннее воздействие. Классический пример животного яда – это змеиный яд, о котором мы и поговорим сейчас.
Змеиный яд
Змея – безногое и относительно медленно перемещающееся животное, поэтому для охоты на гиперактивных грызунов (крыс или мышей) ей необходимы какие-то особые приспособления. Неядовитые змеи ловят быструю и иногда опасную (мыши и крысы могут кусаться!) добычу благодаря засадной тактике и большой силе. Удавы не используют яд, а, укусив добычу, мгновенно обвивают ее кольцами и сдавливают, препятствуя дыханию и кровообращению. Ядовитые змеи ведут себя несколько иначе: быстро введя в жертву яд, они должны просто ждать, пока та умрет или потеряет способность к движению.
Змеиный яд – это модифицированная слюна, накапливающаяся в особом органе и усиленная рядом токсичных белков. Эти белки достаточно разнообразны (их как минимум 25), но действие всех змеиных ядов можно разделить на две основные категории: нарушение кровообращения и нарушение электрических связей между нервной системой и мышцами. Так, яд американских ямкоголовых змей (например, гремучников) обычно влияет на кровообращение, а яд азиатских крайтов и африканских мамб нейротоксичен.
С точки зрения токсикологии укус гремучей змеи, если она решает ввести в жертву весь свой запас яда, – крайне неприятная вещь. В большинстве случаев он приводит к потере крови в результате разрыва эритроцитов и вторичного кровотечения. Из-за этого также наступает понижение артериального давления и шок. Белки змеиного яда разрушают не только эритроциты, но и другие ткани. Вокруг места укуса возникает посинение и почернение, отек, ткани могут быть необратимо деформированы, к тому же, укус сопровождается очень сильной болью.
Укус настоящей гадюки, яд которой содержит нейротоксин, выглядит не так страшно – но во многих случаях оказывается летальным. Нейротоксины поднимают планку химической войны в организме животного на совершенно иной уровень. Чтобы до конца понять, как это происходит, нужно вспомнить, как мышцы и нервы проводят электрические сигналы.
Электрические сигналы и их распространение: ахиллесова пята
Электрические сигналы возникают в головном мозге и спускаются дальше по спинному. Оттуда они передаются мышцам через отростки нервных клеток – аксоны. Аксон – это своего рода живой провод, передающий электрические импульсы от спинного мозга к мышцам, которые могут находиться на довольно большом расстоянии от него.
Электрический сигнал, передаваемый моторными нейронами (нервными клетками, посылающими сигналы к мышцам) так же прост, как азбука Морзе. Только вместо точек и тире в нем есть, по сути, одни точки. Возможно, лучше сравнить его с двоичным компьютерным кодом, где сигнал может быть только «1» или «0». Нервный сигнал – это результат потока ионов, и он одинаков практически у всех животных (см. главу 2). «Точка» электрического сигнала создается скачком напряжения, за которым следует возвращение к исходному состоянию. В проводящей ткани сигналом служит изменение полярности – или заряда – клеточной мембраны. В состоянии покоя на мембране аксона имеется небольшой отрицательный заряд; при возникновении сигнала (потенциала действия) по мембране проходит положительный заряд.