Читаем Создание атомной бомбы полностью

Очевидно, это предсказание не соответствовало истине. Но что же мешает энергии, содержащейся внутри полости, неограниченно увеличиваться в направлении глубокой ультрафиолетовой части спектра? Планк начал работать над этой задачей в 1897 году и интенсивно трудился над нею в течение трех лет. Успех пришел к нему в виде возникшего в последнюю минуту озарения, о котором он сообщил 19 октября 1900 года на заседании Берлинского физического общества. Тем же вечером друзья Планка сравнили его новую формулу с экспериментально полученными данными. На следующее утро они сообщили ему об их точном соответствии. «Более поздние измерения все снова и снова подтверждали формулу для излучения, и притом тем точнее, чем к более тонким методам измерений переходили, – гордо писал Планк в 1947 году, в конце своей долгой жизни»[323][324].

Планк разрешил проблему излучения, предположив, что колеблющиеся частицы могут излучать лишь на некоторых определенных энергиях. Разрешенные энергии определяются новым числом – «…необходимо было ввести некоторую новую универсальную постоянную, которую я обозначил через h, и так как она имела размерность произведения (энергия × время), то я назвал ее элементарным квантом действия»[325][326]. Слово «квант» происходит от формы среднего рода (quantum) латинского слова quantus, означающего «сколько». Могут возникать только такие ограниченные и конечные энергии, которые равны целочисленному кратному hν: частоты ν, умноженной на постоянную Планка h раз. По расчетам Планка, величина h оказалась очень малой и близкой к современному значению, равному 6,63 · 10–27 эрг · с. Универсальная константа h вскоре получила свое современное название: ее стали называть постоянной Планка.

Планку, который был консерватором до мозга костей, не хотелось исследовать радикальные следствия из найденной им формулы излучения. Это сделал другой человек – Альберт Эйнштейн. В опубликованной в 1905 году статье, которая впоследствии принесла ему Нобелевскую премию, Эйнштейн применил идею Планка строго определенных дискретных порций энергии к проблеме фотоэлектрического эффекта. Свет, падающий на некоторые металлы, выбивает из них электроны; подобный эффект используется в современных солнечных батареях, питающих космические аппараты. Но энергия электронов, выбитых из металла, не зависит от яркости света, как казалось бы логичным предположить. Вместо этого она зависит от его цвета – то есть от его частоты.

Эйнштейн разглядел в этом странном факте квантовые проявления. Он предложил еретическую гипотезу о том, что свет, распространяющийся, как показывали в течение многих лет точные научные опыты, в виде волн, на самом деле распространяется в виде маленьких отдельных пакетов – частиц, – которые он назвал «квантами энергии». Такие фотоны (как мы их теперь называем), писал он, имеют дискретную энергию hν и при соударении с поверхностью металла передают бо́льшую часть этой энергии электронам. Таким образом, более яркий свет высвобождает большее число электронов, но не электроны более высокой энергии; энергия испускаемых электронов зависит от hν, то есть от частоты света. Таким образом, Эйнштейн развил квантовую идею Планка, превратив ее из простого, хотя и удобного, вычислительного приема в выражение возможного физического закона[327].

Такое развитие знания позволило Бору взяться за проблему механической неустойчивости модели атома Резерфорда. В июле, в период подготовки «небольшой статьи, которую можно будет показать Резерфорду», у него уже появилась основная идея. Она заключалась в следующем: поскольку классическая механика предсказывает, что атом, по Резерфорду, с маленьким, массивным центральным ядром, окруженным электронами, должен быть неустойчивым, а на самом деле атомы представляют собой одни из самых устойчивых систем в мире, значит, классическая механика не способна описывать такие системы и должна уступить место квантовому подходу. Планк предложил квантовые принципы, чтобы спасти законы термодинамики; Эйнштейн распространил квантовые идеи на свет; Бор предлагал теперь ввести квантовые принципы в самый атом.

В течение всей осени и начала зимы, вернувшись в Данию, Бор разбирался со следствиями из этой идеи. Трудность с атомом Резерфорда заключалась в том, что ничто в его строении не обеспечивало его устойчивости. Если речь шла об атоме с несколькими электронами, он должен был разваливаться на части. Даже в случае атома водорода всего с одним (механически устойчивым) электроном классическая теория предсказывала, что такой электрон должен испускать свет при изменении направления орбитального движения вокруг ядра и, теряя таким образом энергию, смещаться по спиральной траектории к ядру и в конце концов упасть на него. С точки зрения ньютоновской механики атом Резерфорда – миниатюрная солнечная система – должен был быть либо невозможно большим, либо невозможно маленьким.

Перейти на страницу:

Похожие книги

100 великих кораблей
100 великих кораблей

«В мире есть три прекрасных зрелища: скачущая лошадь, танцующая женщина и корабль, идущий под всеми парусами», – говорил Оноре де Бальзак. «Судно – единственное человеческое творение, которое удостаивается чести получить при рождении имя собственное. Кому присваивается имя собственное в этом мире? Только тому, кто имеет собственную историю жизни, то есть существу с судьбой, имеющему характер, отличающемуся ото всего другого сущего», – заметил моряк-писатель В.В. Конецкий.Неспроста с древнейших времен и до наших дней с постройкой, наименованием и эксплуатацией кораблей и судов связано много суеверий, религиозных обрядов и традиций. Да и само плавание издавна почиталось как искусство…В очередной книге серии рассказывается о самых прославленных кораблях в истории человечества.

Андрей Николаевич Золотарев , Борис Владимирович Соломонов , Никита Анатольевич Кузнецов

Детективы / Военное дело / Военная история / История / Спецслужбы / Cпецслужбы
10 мифов о КГБ
10 мифов о КГБ

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷20 лет назад на смену советской пропаганде, воспевавшей «чистые руки» и «горячие сердца» чекистов, пришли антисоветские мифы о «кровавой гэбне». Именно с демонизации КГБ начался развал Советской державы. И до сих пор проклятия в адрес органов госбезопасности остаются главным козырем в идеологической войне против нашей страны.Новая книга известного историка опровергает самые расхожие, самые оголтелые и клеветнические измышления об отечественных спецслужбах, показывая подлинный вклад чекистов в создание СССР, укрепление его обороноспособности, развитие экономики, науки, культуры, в защиту прав простых советских людей и советского образа жизни.÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

Александр Север

Военное дело / Документальная литература / Прочая документальная литература / Документальное
Разведка и Кремль. Записки нежелательного свидетеля
Разведка и Кремль. Записки нежелательного свидетеля

Почти четверть века назад, сначала на Западе, а затем и в России была опубликована книга гроссмейстера сталинской политической разведки Павла Судоплатова «Разведка и Кремль. Записки нежелательного свидетеля». Это произведение сразу же стало бестселлером. Что и не удивительно, ведь автор – единственный из руководителей самостоятельных центров военной и внешнеполитической разведки Советского Союза сталинской эпохи, кто оставил подробные воспоминая. В новом юбилейном коллекционном издании книги «Разведка и Кремль» – подробный и откровенный рассказ Павла Судоплатова «о противоборстве спецслужб и зигзагов во внутренней и внешней политике Кремля в период 1930–1950 годов» разворачивается на фоне фотодокументов того времени. Портреты сотрудников и агентов советских спецслужб (многие из которых публикуются впервые); фотографии мест, где произошли описанные в книге события; уникальные снимки, где запечатлены результаты деятельности советской разведки – все это позволяет по-новому взглянуть на происходящие тогда события.

Павел Анатольевич Судоплатов

Детективы / Военное дело / Спецслужбы