Возможно, самое давнее внешнее возражение против ИИ состоит в том, что вычислительные системы всегда следуют правилам и поэтому неизбежно будут лишены ряда человеческих способностей, вроде креативности или гибкости. Во многих отношениях это самое слабое из внешних возражений, в частности из-за его явной нечеткости и неконкретности. В самом деле, на него можно легко ответить, сказав, в свою очередь, что на нейронном уровне человеческий мозг может быть вполне механичным и рефлекторным, но это никоим образом не препятствует креативности и гибкости на макроскопическом уровне. Конечно, оппонент опять-таки всегда может не согласиться с утверждением о механичности нейронного уровня, но в любом случае не видно хорошего аргумента в пользу тезиса о том, что вычислительная динамика на базовом каузальном уровне несовместима с креативностью и гибкостью на макроскопическом уровне.
Подобное возражение может подкрепляться неявным отождествлением вычислительных систем с символьными
вычислительными системами: системами, производящими символьные манипуляции с высокоуровневыми концептуальными репрезентациями — в предельном случае, с системами, жестко выводящими заключения из посылок логики предикатов. Не исключено, что в этой области указанное возражение не лишено оснований, хотя даже это не очевидно. Но в любом случае класс вычислительных систем гораздо шире. К примеру, низкоуровневая симуляция мозга представляет собой некое вычисление, но не символьное вычисление того рода. Если говорить о промежуточном уровне, то к несимвольным вычислениям обращались коннекционистские модели в когнитивной науке. В этих случаях на каком-то уровне система может следовать правилам, но это напрямую не отражается на поведенческом уровне; и в самом деле, коннекционисты часто говорят, что их метод позволяет получить гибкость на высоком уровне из низкоуровневой механистичности. Как выразился Хофштадтер (Hofstadter 1979), уровень, на котором я мыслю, не обязательно совпадает с уровнем, на котором я существую[185].Возражения от теоремы Геделя
Иногда утверждается, что теорема Геделя показывает, что вычислительным системам свойственны ограничения, которых нет у людей. Теорема Геделя говорит нам, что в любой непротиворечивой формальной системе, достаточно богатой для произведения арифметических операций, будет существовать некое истинное предложение — Геделевское предложение
системы — которое эта система не сможет доказать. И аргумент состоит в том, что поскольку мы, однако же, можем понять, что оно истинно, мы обладаем некоей способностью, отсутствующей у этой формальной системы. Из этого следует, что никакая формальная система не может в точности передавать человеческие способности. (Подобные аргументы выдвигали среди прочих Лукас (Lucas 1961) и Пенроуз (Penrose 1989, 1994).)Краткий ответ на эти аргументы состоит в том, что нет оснований считать, что и люди могут знать об истинности соответствующих Геделевских предложений. В лучшем случае мы можем знать, что если
система непротиворечива, то ее Геделевское предложение истинно, но нет оснований полагать, что мы можем установить непротиворечивость произвольных формальных систем[186]. В особенности это справедливо в случае сложных формальных систем, таких как система, симулирующая реакции человеческого мозга: задача определения непротиворечивости подобной системы вполне может выходить за пределы наших возможностей. Так что вполне может оказаться так, что каждый из нас может симулироваться сложной формальной системой F, такой, что мы не в состоянии установить, является ли она непротиворечивой. И если это так, то мы не сможем узнать, будут ли истинными наши собственные Геделевские предложения.Существует множество вариаций этого геделевского аргумента, с реакциями оппонентов на это предположение и ответными репликами, нацеленными на то, чтобы обойти эти возражения. Здесь я не буду обсуждать их (хотя я подробно обсуждаю их в Chalmers 1995с). Эти вопросы связаны со множеством интересных и стимулятивных моментов, но, думаю, мы вправе сказать, что тезис о том, что геделевские ограничения не применимы к людям, никогда не был убедительным образом обоснован.
Возражения от невычислимости и континуальности