Читаем Способы автономного выживания человека в природе полностью

Численный масштаб – масштаб карты, выраженный дробью, числитель которой – единица, а знаменатель – число, показывающее степень уменьшения на карте линий местности; чем меньше знаменатель масштаба, тем крупнее масштаб карты. Подпись численного масштаба на картах обычно сопровождается указанием величины масштаба – расстояния на местности (в метрах или километрах), соответствующего одному сантиметру карты. Величина масштаба в метрах соответствует знаменателю численного масштаба без двух последних нулей.

При определении расстояния с помощью численного масштаба линия на карте измеряется линейкой, полученный результат в сантиметрах умножается на величину масштаба.

Линейный масштаб – графическое выражение численного масштаба. Он представляет собой прямую линию, разделенную на определенные части, которые сопровождаются подписями, означающими расстояния на местности. Линейный масштаб служит для измерения и откладывания расстояний на карте.

На рис. 6.10 расстояние между точками А и В равно 1850 м.

Рис. 6.10. Измерение расстояний по линейному масштабу

Поперечный масштаб – график (обычно на металлической пластинке) для измерения и откладывания расстояний на карте с предельной графической точностью (0,1 мм).

Стандартный (нормальный) поперечный масштаб имеет большие деления, равные 2 см, и малые деления (слева на графике), равные 2 мм. Кроме того, на графике имеются отрезки между вертикальной и наклонной линиями, равные по первой горизонтальной линии 0,2 мм, по второй – 0,4 мм, по третьей – 0,6 мм и т. д. С помощью стандартного поперечного масштаба можно измерять и откладывать расстояния на карте любого (метрического) масштаба. Отсчет расстояния по поперечному масштабу состоит из суммы отсчета на основании графика и отсчета отрезка между вертикальной и наклонной линиями. На рис. 6.11 расстояние между точками А и В (при масштабе карты 1:100 000) равно 5500 м (4 км + 1400 м + 100 м).

Рис. 6.11. Измерение расстояний по поперечному масштабу

Измерение расстояний циркулем–измерителем. При измерении расстояния по прямой линии иглы циркуля устанавливают на конечные точки, затем, не изменяя раствора циркуля, по линейному или поперечному масштабу отсчитывают расстояние. В том случае, когда раствор циркуля превышает длину линейного или поперечного масштаба, целое число километров определяется по квадратам координатной сетки, а остаток – обычным порядком по масштабу.

Ломаные линии удобно измерять путем последовательного наращивания раствора циркуля прямолинейными отрезками (рис. 6.12).

Измерение длин кривых линий производится последовательным отложением шага циркуля (рис. 6.13). Величина шага циркуля зависит от степени извилистости линии, но, как правило, не должна превышать 1 см. Для исключения систематической ошибки длину шага циркуля, определенную по масштабу или линейке, следует проверять измерением линии километровой сетки длиной 6–8 см.

Рис. 6.12. Измерение расстояний способом наращивания раствора циркуля

Длина извилистой линии, измеренной по карте, всегда несколько меньше ее действительной длины, так как измеряются не кривая линия, а хорды отдельных участков этой кривой; поэтому в результаты измерений по карте приходится вводить поправку – коэффициенты увеличения расстояний.

Рис. 6.13. Измерение расстояний шагом циркуля

Измерение расстояний курвиметром. Вращением колесика стрелку курвиметра устанавливают на нулевое деление, а затем прокатывают колесико по измеряемой линии с равномерным нажимом слева направо (или снизу вверх); полученный отсчет в сантиметрах умножают на величину масштаба данной карты.

Определение расстояний по прямоугольным координатам в пределах одной зоны можно произвести по формуле


где D – длина линии; x1, y1 – координаты начальной точки прямой; x2, y2 – координаты конечной точки прямой.

Определение площадей по квадратам километровой сетки. Площадь участка определяется подсчетом целых квадратов и их долей, оцениваемых на глаз. Каждому квадрату километровой сетки соответствует: на картах масштаба 1:25 000 и 1:50 000 – 1 км2, на картах масштаба 1:100 000 – 4 км2, на картах масштаба 1:200 000 – 16 км2.


Прямоугольные координаты на картах

Прямоугольные координаты (плоские) – линейные величины: абсцисса х и ордината у, определяющие положение точек на плоскости (на карте) относительно двух взаимно перпендикулярных осей X и Y (рис. 6.14). Абсцисса X  и ордината Y точки А – расстояния от начала координат до оснований перпендикуляров, опущенных из точки А на соответствующие оси, с указанием знака.

Перейти на страницу:

Похожие книги

Теория государства и права
Теория государства и права

Учебник, написанный в соответствии с курсом «Теория государства и права» для юридических РІСѓР·ов, качественно отличается РѕС' выходивших ранее книг по этой дисциплине. Сохраняя все то ценное, что наработано в теоретико-правовой мысли за предыдущие РіРѕРґС‹, автор вместе с тем решительно отходит РѕС' вульгаризированных догм и методов, существенно обновляет и переосмысливает РІРѕРїСЂРѕСЃС‹ возникновения, развития и функционирования государства и права.Книга, посвященная современной теории государства и права, содержит СЂСЏРґ принципиально новых тем. Впервые на высоком теоретическом СѓСЂРѕРІРЅРµ осмыслены и изложены РІРѕРїСЂРѕСЃС‹ новых государственно-правовых процессов современного СЂРѕСЃСЃРёР№ского общества. Дается характеристика гражданского общества в его соотношении с правом и государством.Для студентов, аспирантов, преподавателей и научных работников юридических РІСѓР·ов.Р

Алла Робертовна Швандерова , Анатолий Борисович Венгеров , Валерий Кулиевич Цечоев , Михаил Борисович Смоленский , Сергей Сергеевич Алексеев

Детская образовательная литература / Государство и право / Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наука
Теория государства и права
Теория государства и права

В четвертое издание учебника включен ряд новых вопросов, которые до сих пор не рассматривались в курсе «Теория государства и права», но приобрели в последнее время значительную актуальность. Изучение этих вопросов поможет студентам в формировании юридического мышления, творческого подхода к приобретению юридических знаний, самостоятельности в суждениях и оценках государственно-правовой действительности.Учебник полностью соответствует Государственному образовательному стандарту, программе дисциплины «Теория государства и права» для юридических вузов. Темы излагаются в последовательности, которая доказала свою целесообразность в учебном процессе и ориентирует на эффективное усвоение основополагающих понятий, категорий и юридических конструкций.Для студентов всех форм обучения юридических вузов, слушателей других учебных заведений юридического профиля, преподавателей и аспирантов.

Людмила Александровна Морозова

Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наука