Читаем Справочник по морской практике полностью

Например, запись 6 x 30 + 7 означает, что трос свит из 6 прядей, каждая прядь свита из 30 проволок, трос имеет 7 органических сердечников, из которых один общий, и по одному в каждой пряди. Для более подробного обозначения конструкции троса впереди формулы ставят буквы, характеризующие свивку проволок в пряди и соотношение проволок по диаметру. ТК 1X19 означает однопрядный трос с 19 проволоками в тросе при точечном их касании. Л К – 0 7 X 7 означает семипрядный цельнометаллический трос, по 7 проволок одинакового диаметра в пряди, с линейным касанием в каждой из них.

Полная характеристика троса обозначается записанными в определенном порядке цифрами и буквами. Например, запись ЛК-РО 6 x 3 6 + 1 – 1 8 – Н – 1 7 0 – В – Ж С – Л – О , ГОСТ 7668-55, означает трос с линейным касанием разного и одинакового диаметра проволок по отдельным слоям пряди, шестипрядный, по 36 проволок в пряди, с одним центральным органическим сердечником, диаметром 18 лш, нераскручивающийся (трос, проволокам которого придают спиральную форму на специальных станках), из проволоки с пределом прочности 170 кгс/мм2, марки В, для жестких условий работы, левой односторонней свивки, ГОСТ 7668-55.

В характеристике конкретного троса применяются и другие обозначения: НК – некрутящийся трос, который при работе не вращается вокруг своей оси (используется для аварийно-спасательных, гидрологических и других работ); К – трос комбинированной свивки.

Трос крестовой правой свивки (обыкновенный, раскручивающийся) специального буквенного обозначения не имеет.

Стальные тросы бывают жесткие и гибкие. Жесткие тросы изготовляются из малого количества проволок большого диаметра, с одним органическим сердечником или без него. Они обладают большой прочностью. Гибкие тросы изготовляются из большого числа тонких проволок и имеют один или несколько органических сердечников. По гибкости отдельные стальные тросы не уступают растительным тросам. Тросы по гибкости можно сравнивать с помощью коэффициента гибкости тросов (табл. 4.1).


Т а б л и ц а 4.1

Т а б л и ц а 4.2


Измерение стальных тросов, разрывная и рабочая крепость, расчет тросов. Т о л щ и н а стального троса измеряется по диаметру в миллиметрах (мм). При четном числе прядей толщина троса замеряется штангенциркулем (рис. 4.9), при нечетном – лентой. В последнем случае результат измерения нужно разделить на 3,14.


Рис. 4.9. Измерение диаметра троса штангенциркулем:

а – правильно; б – неправильно


Стальные тросы по требованию заказчика могут изготовляться л ю б о й д л и н ы, но не менее 200 м. Наиболее распространены тросы длиной 250, 500, 750 м.

О т н о с и т е л ь н о е у д л и н е н и е стальных тросов (отношение абсолютного приращения длины троса при растяжении к первоначальной его длине) составляет не более 3%. Это их недостаток, так как при резких рывках тросы рвутся.

Вес стального троса W в кг выбирается из ГОСТ или рассчитывается:

где К – коэффициент;

l – длина троса, м;

d – диаметр троса, см.

Для однопрядных спиральных тросов K = 0,52, для трехпрядных без органического сердечника K=0,40, для тросов с одним органическим сердечником K = 0,37, для тросов с несколькими органическими сердечниками.

Р а з р ы в н а я к р е п о с т ь (прочность, разрывное усилие) – минимальная нагрузка, при которой трос разрывается. Величина разрывной крепости R в кгс конкретного троса выбирается из ГОСТ или рассчитывается:

где К – коэффициент;

d – диаметр троса, мм.

Для однопрядных спиральных тросов K=70, для тросов с одним органическим сердечником K=40, для тросов с несколькими органическими сердечниками K=34.

П р и м е ч а н и е . При измерении троса по окружности коэффициент К соответственно принимается равным 7,0; 4,0; 3,4.

П о д б о р т р о с а для определенных условий работы производится по р а б о ч е й к р е п о с т и (допустимому натяжению, которое выдерживает трос в процессе работы в течение продолжительного времени без нарушения целости отдельных проволок или всего троса).

Величина рабочей крепости троса Р в кгс:

где R – разрывная крепость троса, кгс;

п – коэффициент запаса прочности (безопасности).

Для тросов, используемых в стоячем такелаже, n=4, для бегучего такелажа и подъема грузов п = 6, для подъема грузов при больших скоростях подъема n = 6 / 1 0, для подъема людей n=14.

Пример. Подобрать стальной гибкий трос для подъема груза 2000 кг. Трос основан в одношкивном подвижном блоке (груз W удерживается на двух тросах).

Р е ш е н и е . По формулам (4.3) и (4.4) натяжение (рабочая крепость троса):

При 8-кратном запасе прочности разрывная крепость троса

а диаметр троса с 7 органическими сердечниками

Перейти на страницу:

Похожие книги

Информация как основа жизни
Информация как основа жизни

КОРОГОДИН В. И., КОРОГОДИНА В. Л.ИНФОРМАЦИЯ КАК ОСНОВА ЖИЗНИ© Авторы. В. И. Корогодин и В. Л. Корогодина, 2000 г. © Оформление. ИЦ "Феникс", 2000 г.Книга посвящена феномену жизни и информации как внутренне присущему свойству информационных систем.Рассматриваются свойства информации и информационных систем. Выделяются главные свойства информационных систем – способность к "целенаправленным" действиям и расслоение на информационную" и "динамическую" подсистемы.Рассматривается динамика информации от ранних этапов эволюции физических информационных систем до систем с биологической информацией – генетической, поведенческой и логической. Особое внимание уделяется динамике биологической информации в биосфере. Одной из проблем, затрагиваемой авторами, является взаимодействие ноосферы и техносферы, связанной с автогенезом информации.Книга рассчитана на специалистов, а также на круг читателей, интересующихся теорией информации, эволюцией, биологией и взаимоотношениями биосферы и техносферы.KOROGODIN V. I. & KOROGODINA V. L.Information as the Foundation of Life. – Dubna: "Phoenix" Publishing Center, 2000. – 208 p.The book analyzes the phenomenon of life and information as an inherent quality of information systems.Properties of information and information systems are discussed. The main properties of information systems are pointed out: the ability to act "purposefully" and the division into an "informative" and "dynamic" subsystems.The dynamics of information is analyzed, from the early stages of physical information system evolution to the systems with biological genetic, be-haviouristic and logical information. Special attention is attached to the dynamics of biological information in biosphere. One of the problems, connected with information autogenesis and discussed by the authors, is the interaction of noosphere and technosphere with biosphere.The book is recommended to specialists and readers who are interested in the theory of information, evolution, biology and interaction of biosphere and technosphere.

В. И. Корогодин , Владимир Иванович Корогодин , В Л Корогодина , В. Л. Корогодина

Справочная литература / Прочая справочная литература / Словари и Энциклопедии