Читаем Справочное пособие по системам охраны с пироэлектрическими датчиками полностью

При накрывании линзы Френеля прозрачной тряпкой датчик теряет чувствительность. Даже манипуляции руками перед внешней поверхностью линзы Френеля не дают эффекта срабатывания. Это «эффект попугая». Когда клетку с разговорчивым попугаем накрывают платком, попугай, хоть и не закрывает глаз, но замолкает. Таким образом, сделать датчик охраны временно бесполезным можно простым накрытием его рабочей поверхности любой тряпкой. В продолжении эксперимента были предприняты попытки закрашивания рабочей поверхности датчика охраны из распылителя быстросохнущей (нитро) краской черного цвета (спрей-баллон) и спрея быстросохнущего, но прозрачного лака. Эффект тот же «ослепленный» датчик полностью перестает контролировать зону «ответственности».

Другое дело, что надо исхитриться и как-то суметь подобраться к включенному датчику, установленному на стене, ведь зайти с фронта нельзя – это вызовет срабатывание. Значит, остается один путь – опустить тряпку сверху (с потолка или со стороны стены – с тыльной стороны датчика).

Рекомендация: обезопасить стены, потолок – подходы к датчику со стороны «слепых» зон, что можно сделать установкой нескольких датчиков в одном помещении – с перекрестными зонами мониторинга.

Стоимость данной работы по дополнительной безопасности зависит от производственных возможностей организации, осуществляющей техническое обслуживание данного оборудования.

Эксперимент 2

Воздействие с помощью радиоволн

В этом эксперименте было проведено последовательное воздействие радиоволнами разной частоты и мощности посредством поочередного включения трансиверов (см. п. 2.1) на передачу. Во всех случаях воздействие вызывало немедленное однократное (не продолжительное) срабатывание датчика охраны.

Таким образом, не зависимо от модуляции радиоволн, их частоты (последовательно применялись попытки радиопередачи из соседней комнаты на частотах 1,8 МГц, 3,5 МГц, 14 МГц, 27,5 МГц, 36,5 МГц, 145,5 МГц, 172,0 МГц, 435,0 МГц, 446, 6 МГц) датчик срабатывал каждый раз, значит при попытках такого несанкционированного воздействия он скорее даст серию ложных срабатываний, чем останется бесполезно-заблокированным злоумышленниками.

Здесь следует отметить, что сделаны практические попытки воздействия на датчик на радиочастотах, передатчики для которых наиболее популярны и могут быть доступны в открытом доступе. Однако, следующим шагом было проверена реакция датчика на входящий звонок сотового телефона стандарта GSM с частотным диапазоном 900/1800 МГц. При входящем и исходящих звонках из соседней комнаты датчик не никак реагировал (при прохождении звонка и ведении разговора по сотовому телефону и входе в охраняемое помещение датчик нормально срабатывал).

Но при расположении сотового телефона на расстоянии 1 метр от корпуса датчика и организации входящего звонка на телефон происходило срабатывание и выработка сигнала «тревога» в штатном режиме. После воздействия на частотах сотовой связи датчик также срабатывал нормально.

Эксперимент 3

Воздействие с помощью устройства, заглушающего радиосвязь на частотах 900/1800/2400 мГц (включая связь по протоколу 802 Wi-Fi)

При всех трех режимах, включая высокочастотный 2,4 ГГц, датчик вел себя так же, как в эксперименте 2. При включении устройства подавления (генератора заглушки см. п. 2.1.) на расстоянии до 30 метров фиксировалось самопроизвольное однократное срабатывание датчика охраны на основе PIR. После того, как датчик возвращался в режим охраны помещения (но воздействие генератора заглушки не прерывалось) он в штатном режиме срабатывал при появлении в зоне мониторинга человека (при входе в охраняемую комнату).

Рекомендации по экспериментам 2 и 3: с этой стороны датчик вполне стабилен и устойчив, скорее можно ожидать ложные срабатывания, чем его дистанционную блокировку. По крайней мере в данном случае – для последней опасений не выявлено.

Эксперимент 4

Воздействие пучком лучей и ИК подсветкой

С разного расстояния от рабочей поверхности датчика (вариативно) применено устройство с концентрированным лучом инфракрасного спектра излучения красного цвет на основе полупроводников из арсенида галлия. Если направить лучи с близкого расстояния 80—100 см от линзы Френеля, удается заблокировать датчик в 10 из 15-ти случаев такого воздействия. Однако в этом эксперименте надо понимать, что я имел возможность использовать только относительно маломощный концентрированный световой луч, с длиной волны в диапазоне 632,8 нм (нанометров), имеющий лишь подобие лазера (если предполагать, что лазер имеет не обывательское, а научно обоснованное определение).

Перейти на страницу:

Похожие книги

Домашний мастер
Домашний мастер

Хотите, чтобы ваш дом всегда был в порядке? Чтобы паркет не вздыбливался, обои не отклеивались, а двери и оконные рамы не перекашивались? В общем-то для этого нужно не так уж много – просто следить за состоянием своего жилища, а при необходимости его ремонтировать. В этом вам поможет наша книга «Домашний мастер». Никто не утверждает, что с ее помощью вы сможете стать высококлассным специалистом, однако правильно ухаживать за своим домом вы научитесь точно. Вам будут подвластны все виды штукатурных, столярных, малярных и прочих работ, вы сможете постелить линолеум, уложить паркет, сделать подоконники, выровнять стены, наклеить на них обои (между прочим, это не так просто, как может показаться!). Словом, отремонтировать свой дом самостоятельно, не привлекая специалистов – да, очень хороших, но (посмотрим правде в глаза!) таких дорогостоящих… А если еще и проверить названную ими сумму… Так что приобретайте эту книгу, необходимые стройматериалы и инструменты и – вперед. Ваш дом будет как новенький, а вы гордо сможете сказать: «Я это сделал сам!»

Владимир Онищенко

Сделай сам / Хобби и ремесла / Дом и досуг