Читаем Среднего более не дано полностью

Применительно же к настоящему времени можно говорить о том, что интеллектуальные способности человека препятствием в разработке революционных теорий пока не являются. Поскольку пока теории выдвигаются только людьми, уже в силу самого своего рождения теории эти поддаются пониманию по крайней мере некоторыми из нас, хотя здесь, как правило, речь идет о наиболее умных и образованных людях. Как только новые теории начнут выдвигаться гениальными машинами, данное интеллектуальное преимущество одних над другими исчезнет, и однажды настанет момент, когда понимание будет казаться достоянием весьма далекого прошлого. Не стоит полагать, что мы уже сейчас знаем, какие именно области науки будут заниматься сбором данных с привлечением энтузиастов-добровольцев, а в каких гениальными машинами будут выдвинуты гениальные теории. Пищеварительная система морских звезд вполне может оказаться той областью, где машины способны будут подметить закономерности, ускользающие от нашего внимания, и предложить достаточно сложные, для нас же — и вовсе непонятные, теории.

Нам же все в большей степени будет доступна та часть науки, которая занимается сбором информации с привлечением энтузиастов. Видимой частью науки будут ее административная составляющая и система сбора данных, а также волшебные технические устройства, которыми мы будем пользоваться. Что же касается, условно говоря, «средней» прослойки знаний — науки как общего способа понимания образованными гражданами устройства мира посредством теорий,—то пик ее расцвета придется на двадцать первый век.

<p>Куда движется экономика?</p>

Ученые, как правило, страдают комплексом провинциальности, когда речь заходит об их собственных областях науки и специализации, но все же имеет смысл уделить внимание и той науке, которой занимаюсь я сам и которую с легкой руки Томаса Карлейля называют «мрачной».

За последние десять лет в экономической науке наблюдается значительный сдвиг в вопросах, которым уделяется первостепенное внимание. И вызван он деятельностью интернет-компаний, а не прихотью ученых-экономистов. При разработке своих бизнес-моделей и продаже своей продукции потребителям интернет-компании зачастую пользуются непроверенными и в значительной мере неструктурированными данными. Делают они это просто потому, что могут себе это позволить. В распоряжении Facebook, Google, Amazon и прочих компаний находятся невероятные объемы высококачественной информации — большие, чем в распоряжении большинства ученых-экономистов. И при обработке данных они идут путем, имеющим мало общего с теоретической работой. Они просто грубо «перемалывают» данные, и теперь мы имеем дело с тем, что получило название больших данных. Данное понятие является предвестником грядущей бизнес-революции и означает использование статистики по данным, производимым электронными средствами общения.

В своем подходе к работе с этими данными указанные компании избегают структурных теоретических моделей. Ими предпринимаются попытки соответствующего кодирования и организации данных, однако они избегают начинать эту работу с «модели Джонса, объясняющей, почему люди пользуются поисковиком Google», или «модели Брауна, позволяющей выявить, какие книги покупают на Amazon». Компании эти берутся сразу за цифры и пытаются выявить благоприятные возможности, где только можно.

Экономика в качестве области исследований в последнее время идет тем же путем, что и интернет-компании: множество данных и относительно слабая структура теоретического характера. Мощное «перемалывание» данных и тщательный сбор информации отодвигают теоретическую составляющую на второй план. Совсем от теоретических моделей мы еще не отказались, поскольку мы придаем ряду из них огромное значение, например модели, согласно которой повышение цены при неизменности прочих критериев ведет к снижению потребления соответствующего товара или услуги. Однако это — далеко не новые теории, реальные же действия и добавочная стоимость проистекают из данных и их обработки, включая данные полевых исследований, лабораторных экспериментов и опытов с произвольным распределением объектов по контрольным группам. Используемые модели совершенствуются в недостаточной степени, а их сложность зачастую отпугивает многих ученых-экономистов.

Я резюмировал бы наблюдаемую картину следующим образом: (а) значительно более качественные данные; (Ь) более высокие стандарты для эмпирических опытов; (с) большое число новых сложных теорий, не находящих соответствующего практического применения. Развитие таких направлений, как математическая экономика, экономический инжиниринг, экономика сложных систем и теория игр продолжается — чего и следовало бы ожидать от многосторонних и специализированных дисциплин, однако свое относительное влияние данные дисциплины утрачивают. Экономика все в меньшей мере напоминает работу Эйнштейна и Евклида и все в большей — исследования пищеварительной системы морских звезд.

Перейти на страницу:

Все книги серии Стратегии экономического развития под эгидой Министерства экономического развит

Похожие книги

Миф машины
Миф машины

Классическое исследование патриарха американской социальной философии, историка и архитектора, чьи труды, начиная с «Культуры городов» (1938) и заканчивая «Зарисовками с натуры» (1982), оказали огромное влияние на развитие американской урбанистики и футурологии. Книга «Миф машины» впервые вышла в 1967 году и подвела итог пятилетним социологическим и искусствоведческим разысканиям Мамфорда, к тому времени уже — члена Американской академии искусств и обладателя президентской «медали свободы». В ней вводятся понятия, ставшие впоследствии обиходными в самых различных отраслях гуманитаристики: начиная от истории науки и кончая прикладной лингвистикой. В своей книге Мамфорд дает пространную и весьма экстравагантную ретроспекцию этого проекта, начиная с первобытных опытов и кончая поздним Возрождением.

Льюис Мамфорд

Обществознание, социология
Политика у шимпанзе. Власть и секс у приматов
Политика у шимпанзе. Власть и секс у приматов

Первое издание книги Франса де Валя «Политика у шимпанзе: Власть и секс у приматов» было хорошо встречено не только приматологами за ее научные достижения, но также политиками, бизнес-лидерами и социальными психологами за глубокое понимание самых базовых человеческих потребностей и поведения людей. Четверть века спустя эта книга стала считаться классикой. Вместе с новым введением, в котором излагаются самые свежие идеи автора, это юбилейное издание содержит подробное описание соперничества и коалиций среди высших приматов – действий, которыми руководит интеллект, а не инстинкты. Показывая, что шимпанзе поступают так, словно они читали Макиавелли, де Валь напоминает нам, что корни политики гораздо старше человека.Книга адресована широкому кругу читателей.

Франс де Вааль

Обществознание, социология
Комментарии к материалистическому пониманию истории
Комментарии к материалистическому пониманию истории

Данная книга является критическим очерком марксизма и, в частности, материалистического понимания истории. Авторы считают материалистическое понимание истории одной из самых лучших парадигм социального познания за последние два столетия. Но вместе с тем они признают, что материалистическое понимание истории нуждается в существенных коррективах, как в плане отдельных элементов теории, так и в плане некоторых концептуальных положений. Марксизм как научная теория существует как минимум 150 лет. Для научной теории это изрядный срок. История науки убедительно показывает, что за это время любая теория либо оказывается опровергнутой, либо претерпевает ряд существенных переформулировок. Но странное дело, за всё время существования марксизма, он не претерпел изменений ни в целом и ни в своих частях. В итоге складывается крайне удручающая ситуация, когда ориентация на классический марксизм означает ориентацию на науку XIX века. Быть марксистом – значит быть отторгнутым от современной социальной науки. Это неприемлемо. Такая парадигма, как марксизм, достойна лучшего. Поэтому в тексте авторы поставили перед собой задачу адаптировать, сохраняя, естественно, при этом парадигмальную целостность теории, марксизм к современной науке.

Дмитрий Евгеньевич Краснянский , Сергей Никитович Чухлеб

Обществознание, социология