Означает ли все это, что механизмы, установленные при изучении старения одного вида животных, не могут быть использованы для объяснения старения других. Подобный вывод был бы неверным. Во-первых, основные причины и фундаментальные механизмы старения животных разных видов сходны. Во-вторых, сдвиги, отличающиеся темпом развития при старении животных разных видов, имеют в основном одинаковый механизм. Более верен следующий вывод: механизмы, раскрытые на одном виде животных, не могут быть полностью перенесены на другие виды.
Выше речь шла о межвидовых общностях и различиях в темпе старения. Это ни в коей мере не переносимо на индивидуальные различия особенностей старения внутри вида, к примеру человека. Все люди стареют одинаково и каждый стареет по-своему.
Биологи долгое время избегали использования технических принципов для объяснения деятельности живых систем, опасаясь упрека в механицизме, техники долгое время избегали использования биологических принципов для объяснения деятельности машинных систем, боясь упрека в примитивизме. В наши дни кибернетика открыла общие принципы деятельности любых систем и способствовала пониманию их общности и различий.
В технике есть понятие надежности, существует теория надежности. Под надежностью понимается безотказность, долговечность системы, свойство сохранять устойчивую работоспособность в течение определенного времени. Эти критерии важны не только теоретически, но и практически — для оценки состояния живой системы, для характеристики изменения ее во времени, для оценки адаптации в процессе старения. Определение надежности важно не только для того, чтобы оценить текущее состояние, но и для того, чтобы прогнозировать его будущее. Биологический возраст по сути дела определяется степенью надежности организма.
В технике для определения надежности применяют нагрузочные пробы, оценивают работу системы в определенном режиме. Этот же принцип приложим и для оценки надежности живых систем.
Старение в конечном итоге приводит к снижению надежности организма, его отдельных систем и клеток, и это лежит в основе ограничения приспособительных возможностей, развития патологии. Более того, можно утверждать, что надежность организма, системы зависит и от выраженности процессов витаукта, ибо именно они определяют долгосрочную адаптацию.
При старении снижается надежность систем на всех уровнях — молекулярном, клеточном, организменном, и, что очень важно, для ряда этих систем на основании соответствующих математических моделей удается дать количественную оценку ее изменения. Снижение надежности любой системы выражается в том, что она не может длительно поддерживать оптимальный уровень деятельности, более того, при длительной нагрузке возникают грубые повреждения.
Важным в механизме старения является снижение надежности систем биосинтеза белка во многих клетках. Ведь белок — структурная основа осуществления любой функции, и если снижается надежность системы его синтеза, то это в конечном итоге приводит к снижению работоспособности клетки, органа. Биосинтез белка активируется при продолжительной напряженной деятельности органа. У старых животных активация всей системы биосинтеза белка при усиленной деятельности сердца, печени, почек выражена в меньшей степени, чем у молодых. Это приводит к менее выраженному росту содержания ферментов, сократительных белков, ионных каналов клеток, ведет к недостаточности сердца, к снижению надежности его работы, к ослаблению функции печени, почек.
Существует очень важный приспособительный феномен — генетическая индукция ферментов: чем больше поступает веществ, катализируемых определенным ферментом, тем большее количество его синтезируется. Генетическая индукция вызывается и гормонами (рис. 8). При длительном введении гормона синтез соответствующих ферментов резко нарастает. Однако надежность системы не бесконечна, — несмотря на продолжающееся введение гормона, синтез ферментов ослабляется. На рис. 8 показано, как у старых животных надежность системы синтеза ферментов в печени резко падает, у них значительно быстрее наступает снижение активности ферментов.
Рис. 8.
1
— тирозинаминотрансфераза; 2 — фруктозо-1,6-дифосфотаза; 3 — глюкозо-6-фосфатаза