Электромагнитные волны Герц получил в 1888 г. После этого уже ничто не могло остановить победоносного шествия теории Максвелла. П. Н. Лебедев, учившийся тогда в Страсбургском университете, вспоминал потом характерный эпизод. За год до опытов Герца курс теоретической оптики у них читал профессор Э. Кон. Этот курс был построен на основе классической теории Юнга — Френеля, т. е. на механической теории света. Курс был большой — по четыре часа в неделю, но взглядам Максвелла, преподносимым к тому же как некий курьёз, отводилось всего... полчаса на одной из заключительных лекций. А в 1889 г. профессор Кон тот же курс читал уже полностью на основе теории Максвелла. Так стремительно утверждалась в науке фарадей-максвелловская теория! Она словно брала реванш за десятилетия пренебрежения и унизительного к ней недоверия.
Герц (в одно время с О. Хевисайдом) придал уравнениям Максвелла их современную форму. Больцман по этому поводу замечает: «Я мог бы сказать, что последователи Максвелла в этих уравнениях, пожалуй, ничего кроме букв не переменили. Однако это было бы слишком. Конечно, не тому следует удивляться, что к этим уравнениям вообще что-то могло бы быть добавлено, а гораздо более тому, как мало к ним было добавлено».
В той борьбе за утверждение теории Максвелла, которая велась в науке на разных этапах, исключительная заслуга принадлежит русским учёным. А. Г. Столетов был не только активным пропагандистом первых статей Максвелла, он предложил свой метод для экспериментального измерения «постоянной Максвелла», выражающей скорость распространения волны. В «Трактате» Максвелл потом отметил, что метод Столетова является одним из самых надёжных и точных.
Для подтверждения теории Максвелла важное значение имела проверка соотношения n²=ε (квадрат показателя преломления равен диэлектрической постоянной). В 1872—1874 гг. Больцман предпринял серию работ по проверке и уточнению n и ε для ряда твёрдых и газообразных тел. В 1874 г. ученик Столетова Н. Н. Шиллер, следуя указаниям Максвелла, первым стал измерять диэлектрические постоянные в
Замечательный русский физик Н. А. Умов, введя в 1873 г. (правда, независимо от максвелловской концепции) понятие о движении и потоке энергии, сделал существенный вклад в разработку теории поля. Умов с восхищением отзывался о теории Максвелла. «Работу Максвелла,— писал он,— можно сравнить с работой художника, разбившего вазу с изящным рисунком и из черепков этой вазы построившего новую. Получился новый рисунок, составленный из элементов старого...»
После опытов Герца борьба за теорию Максвелла вступила в новую фазу. И вновь русская физика заняла самые передовые, а в ряде направлений и главенствующие позиции. У. Брэгг говорит: «После того как Максвелл сформулировал четыре математических уравнения... радио, как мы теперь называем его, стало возможностью». Эту возможность впервые осуществил А. С. Попов, который в мае 1895 г. произвёл передачу и приём радиосигналов. Изобретение Попова вывело теорию Максвелла в широкий мир техники и многочисленных её приложений. В том же году П. Н. Лебедев получил самые короткие (6
Максвелл никогда не ставил перед собой задачи — дать законченную картину мира, но исторически сложилось так, что ему и Гельмгольцу суждено было завершить картину мира классической физики, начатую Галилеем и Ньютоном. «Имя его блистает на вратах классической физики»,— сказал М. Планк. Но, вместе с тем, Максвелл — это и конец классической физики.