На конференции в мансарде Эрхарда Хокинг еще мог говорить сам, но к тому времени его вот уже несколько лет не понимал никто, кроме самых близких. На сей раз в роли переводчика выступал Мартин Рочек, в ту пору младший научный сотрудник DAMPT (впоследствии он добился заметных успехов в области теории струн и суперсимметрии). Рочек сопровождал Хокинга в той американской поездке, научился более-менее понимать его и повторять его слова во всеуслышание. Сохранились видеозаписи, показывающие, насколько непрост был этот процесс. В большинстве случаев, как и на Лукасовской лекции, выступает, собственно, аспирант Хокинга, а Хокинг “сидит рядом и добавляет краткие реплики, если аспирант сбивается”[163]
. Но при всей сложности этого “византийского ритуала” заявление Хокинга в мансарде Эрхарда прозвучало более чем отчетливо.Он уже пятнадцать лет вдумывался в природу черных дыр и вывел уравнения столь прозрачные, столь изящно-простые, что уверился в их правильности. Эти результаты, настаивал он, свидетельствуют о глубочайшей гармонии, лежащей в основе мироздания[164]
. К 1981 году едва ли кто-нибудь сомневался в существовании излучения Хокинга. Но сам Хокинг еще в пору первой стажировки в Пасадене в 1974–1975 годах начал понимать, что в основе уравнений, подтверждающих это его открытие, таится парадокс, который грозит перевернуть всю науку физику. Парадокс этот связан с утратой информации, попавшей в черную дыру: нарушается один из фундаментальных законов физики, закон сохранения информации, – согласно этому закону, никакая информация не теряется во вселенной.Важно понять значение слова “информация” в данном контексте. Для нас информация – это сведения обо всей материи, которая понадобилась при формировании черной дыры и которая попала в нее в дальнейшем. Но что такое информация в глазах физика-теоретика? Если сформулировать кратко, то это “информация, закодированная в частицах, составляющих вселенную”.
Приведем пример из истории изучения черных дыр. Этот пример поможет понять, что такое информация для физика-теоретика. В книге “Война черных дыр” Леонард Сасскинд рассказывает о том, как Бекенштейн провел мысленный эксперимент, подобный тем, которые проводил Альберт Эйнштейн. (Как вы помните, гипотезу Бекенштейна Хокинг в 1972 году принял как вызов.) Один-единственный фотон, падая в черную дыру, уносит с собой абсолютный минимум информации, но даже и это не так уж мало. С точки зрения Бекенштейна, главная информация – куда именно падает этот фотон.
Для своего эксперимента Бекенштейн попытался представить себе еще меньше информации, свести ее к одному биту, к предложенной Джоном Уилером единице. Бит обладает наименьшим возможным размером во вселенной – квантовым расстоянием, которое вычислил в начале ХХ века Макс Планк. Чтобы представить себе это, Бекенштейн прибег к принципу неопределенности Гейзенберга и принялся “размывать” место падения фотона. Он вообразил фотон с такой длиной волны, что местом его вхождения в черную дыру с равной вероятностью оказался бы весь горизонт событий. Точка входа, таким образом, становилась максимально неопределенной, и вся информация действительно сводилась к одному биту – фотон вошел в черную дыру. С появлением этого фотона масса черной дыры увеличивается, и, соответственно, горизонт событий расширяется – на самую “малость”, которую Бекенштейн и хотел вычислить.
Очевидно, здесь слово “информация” употребляется не совсем так, как мы с вами употребляем его повседневно. Физиков интересует не только вопрос о том, на какую передачу был настроен телевизор Джона Уилера, когда падал в черную дыру.
Сама мысль, что информация исчезает в черной дыре и становится недоступной для тех, кто остался снаружи, ученых, собравшихся в мансарде, нисколько не удивляла. Они привыкли к ней, и существование такого рода “закрытой” информации отнюдь не нарушало закона о сохранении. Пусть информация о черной дыре недоступна внешнему миру, но она никуда не делась из вселенной. Хокинг же додумался до чего-то куда более поразительного. Наступит миг, когда черная дыра излучит наконец всю свою массу и исчезнет. Что тогда произойдет со всем тем, что участвовало в формировании черной дыры или попало в нее позже?
Если до сих пор вы внимательно читали эту книгу, вы уже готовы поднять руку и напомнить, что “все это” превратилось в излучение Хокинга. Разумеется, внешне это излучение мало похоже на того злосчастного астронавта, который упал в черную дыру, но разве оно не решает проблему? В конце концов, закон сохранения информации предполагает, что информация, закодированная в частицах, из которых состоит вся вселенная, может дробиться, перекомбинироваться, уничтожаться, но – если верны известные нам фундаментальные законы физики – эта информация всегда может быть восстановлена из частиц, которые ее составляли. Иными словами, была бы информация, а восстановление всегда возможно[165]
.