На рисунке 10.7b также изображены два события. Расстояние во времени между ними больше расстояния в пространстве. Соединяющая их мировая линия отклоняется от оси времени менее чем на 45 градусов. Информация успеет попасть из точки X в точку Y, путешествуя со скоростью ниже скорости света. То есть в физике квадрат четырехмерного расстояния между событиями X и Y – отрицательное число.
Рис. 10.7. Разница между пространством и временем.
Вы еще не заблудились? Последние два абзаца были трудноваты. И если вы читали внимательно, сейчас, вероятно, в вашем мозгу вспыхнул тревожный сигнал. Квадрат числа не бывает отрицательным! В нашей математике такого просто не может быть. Если квадрат окажется отрицательным, то как извлечь квадратный корень? Сколько будет – квадратный корень из –9? В нашей математике квадрат любого числа, и положительного, и отрицательного, – всегда положительное число. Три в квадрате – девять и минус три в квадрате – тоже девять. Минус девять не получится, как ни крути. Квадрат не бывает отрицательным, и точка.
Стивен Хокинг и другие физики сумели обойти это противоречие. Допустим, что все же существуют числа, которые, будучи умножены на самих себя, дают отрицательное произведение. Допустим – и посмотрим, что произойдет. Скажем, некое воображаемое число, умноженное на самое себя, дает минус единицу. Вычислим истории частиц и истории вселенной, используя эти воображаемые числа. Будем вести расчеты в “мнимом”, а не в “реальном” времени. Время, которое нужно, чтобы добраться из пункта X до пункта Y на рисунке 10.7b, – мнимое время. Квадратный корень из минус девяти – мнимая тройка.
Пусть эти числа послужат для нас математическим приемом (даже фокусом, если угодно) в расчетах, которые иначе не имели бы смысла. “Мнимое время” позволяет физикам точнее рассчитывать гравитацию на атомном уровне и по-новому взглянуть на раннюю историю вселенной.
Размазать скорость света?
Если вернуться вспять к началу вселенной, по мере того как пространство будет становиться все более плотным, все меньше будет вариантов местонахождения частицы в данный конкретный момент. А значит, как гласит принцип неопределенности, чем точнее мы будем знать позицию частицы, тем менее точно сможем измерять ее движение.
Для начала рассмотрим частицу света, фотон, при нормальных условиях. Фотоны движутся со скоростью 300 000 километров в секунду – это и есть скорость света. Но теперь я вынуждена сказать вам, что это может быть и не так (вы уже, наверное, привыкли к подобным парадоксам). Мы убедились, что вероятность найти электрон размазана в определенной области вокруг атомного ядра – одни расстояния от ядра представляются более вероятными, чем другие, но все размазано и нечетко. Принцип неопределенности не позволяет нам точно установить одновременно и положение, и движение электронов, и этот же принцип действует по отношению к фотонам.
Ричард Фейнман и другие физики пришли к выводу, что вероятность движения фотона со скоростью 300 000 км/с распределяется по некоторой “области” возле этой скорости. Иными словами, скорость фотона колеблется около той величины, которую мы называем скоростью света. На большом расстоянии вероятности уравновешиваются и средняя скорость фотона действительно равна 300 000 км/с. Но на малом расстоянии, на квантовом уровне, существенно, если фотон движется чуть быстрее или чуть медленнее. Напрямую эти флуктуации наблюдать невозможно, однако путь электронов на диаграмме пространства-времени будет выглядеть не как прямая линия под углом в 45 градусов к осям, а несколько размыто.
В ранний период существования вселенной эта линия становится
Рис. 10.8. Действие принципа неопределенности в ранней вселенной.