Читаем Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании. полностью

Энергия – это единая мера способности совершать работу. Последняя является формой передачи энергии от одной системы к другой или от системы к ее окружению. Любое тело или система обладает внутренней энергией, которая является суммой кинетической и потенциальной энергий всех частиц этого тела или системы. Внутренняя энергия является функцией состояния системы и не зависит от того, каким образом система оказалась в данном состоянии. Термодинамическая функция состояния, которая отражает баланс энтропии и энергии системы, является свободной энергией Гиббса (G). Свободная энергия Гиббса является мерой устойчивости химического соединения, а также мерой осуществимости самопроизвольной физико-химической реакции. Изменение свободной энергии Гиббса (дельта G) – это та часть изменения внутренней энергии, которая может превращаться в работу. Только при отрицательных значениях этой дельты может происходить адгезия биомолекул на поверхности материала.

Как показывают расчеты, биосовместимые материалы имеют различную величину энергии Гиббса и, следовательно, потенцию к самопроизвольной адгезии биомолекул на своей поверхности. Наиболее высокие показатели имеют цирконийоксидная и алюмооксидная керамика, а также оксиды титана; наиболее низкие – оксиды кобальта.


Физико-химические свойства поверхностей биосовместимых материалов

Одной из составляющих внутренней энергии тела или системы является поверхностная энергия. Как и свободная энергия Гиббса, она определяет одно из наиболее важных биохимических свойств поверхности материалов – способность к адгезии биомолекул [Thull R., 1998].

Считается, что для её осуществления поверхностная энергия биосовместимого материала должна составлять 60-120 мДж/м2, так как адсорбция является энергоёмким процессом, требующим потребления не менее 45–60 мДж/м2 поверхности биосовместимого материала. Математическое уравнение расчёта энергетических затрат, необходимых для адгезии биомолекул на поверхности небиологического материала, было выведено F.M. Fowkes (1986).

Вместе с тем для образования костной ткани на поверхности имплантата важна не столько способность к адсорбции собственно белков на поверхности биосовместимого материала, сколько способность этой поверхности к связыванию специфических белков, обеспечивающих адгезию остеобластов и формирование остеоида.

Можно предположить, что первоначально с поверхностью имплантата будут взаимодействовать белки плазмы крови, в первую очередь фибриноген. Этот белок является основой для образования волокон фибрина, которые необходимы для направленной пролиферации остеогенных клеток. Однако фибриноген спустя 3–5 дней (период пролиферации остеогенных клеток и их преобразования в остеобласты) должен освободить место для специфических белков (витро– и фибронектина), обеспечивающих адгезию остеобластов и адсорбцию коллагена. Это означает, что к моменту секреции остеобластами этих специфических белков должна произойти десорбция фибриногена от поверхности имплантата. Согласно разработанной В. Kasemo и J. Lausmaa (1986) схеме за первичной адсорбцией на поверхности имплантата биомолекул и молекул воды следует десорбция биомолекул. Затем происходит реабсорбция других биомолекул, их модификация или фрагментация. Поэтому сила связывания фибриногена поверхностью биосовместимого материала имеет большое значение, но она должна быть адекватной, т. е. обеспечивать адсорбцию фибриногена не более 3–5 дней.

Изучая процессы адсорбции и десорбции различных белков, D.F Williams, I. Askill и R. Smith (1985) также пришли к выводу, что сила адсорбции самого фибриногена составляет не более 3–5 дней.

На основании результатов многочисленных исследований [Williams D.F. et al., 1985] можно сделать вывод о том, что титан обладает умеренной способностью к адсорбции фибриногена и обеспечивает оптимальные сроки его десорбции.

После десорбции фибриногена происходят диффузия, адсорбция и химическая реакция между кислотными остатками витронектина и ионами титана, что создаёт условия для адгезии остеобластов к поверхности имплантата. Витронектин при этом выступает в качестве мишени для рецепторов остеобластов, которые представляют собой белки интегрин и адгерин, входящие в состав клеточной мембраны остеобластов, прикрепляющиеся к витронектину и обеспечивающие связь вне– и внутриклеточных белковых комплексов.

В процессе секреции остеоида связь между рецепторами остеобластов и витронектином ослабевает, происходит их отрыв от поверхности имплантата, а затем десорбция, диффузия или фрагментация витронектина. Места, освободившиеся после десорбции и диффузии этого белка, могут быть заняты молекулами диссоциированных аминокислот, образующих коллаген.


Механические свойства имплантационных материалов

Перейти на страницу:

Похожие книги

Справочник медсестры
Справочник медсестры

Книга «Справочник медсестры» включает основную информацию по вопросам сестринского дела. Авторы рассказывают историю становления сестринского дела как науки, рассуждают о морально-этических качествах медицинской сестры, ее профессиональной ответственности, правах пациента с учетом современного подхода к сестринской деятельности (читатели смогут узнать, что такое сестринский процесс).Отдельные разделы посвящены описанию, лечению, диагностике наиболее распространенных патологий и уходу за пациентом, помощи при неотложных состояниях. Кроме того, в книге приводятся описания основных медицинских манипуляций, выполняемых медсестрой.Издание может быть использовано в качестве учебного пособия для средних медицинских учебных заведений и как руководство по уходу за больными в домашних условиях.

Владимир Александрович Плисов , Елена Юрьевна Храмова

Медицина / Справочники / Образование и наука