Читаем Стоунхендж и пирамиды Египта полностью

Во второй половине 19-го столетия известный специалист в этой области Фридрих Хульти утверждал, что все древние меры могли быть произведены от египечского фута, равного 300 миллиметрам (11,8 дюйма), и локтя, равного 450 миллиметрам (17,7 дюйма). Изучив соотношение египетского и римского футов, Стеккини пришел к выводу, что истинной основой был географический или греческий фут, равный 307,7957 миллиметра (12,1 дюйма).

Многие ломали головы над происхождением как древних, так и современных мер. Я, естественно, задался вопросом, а нельзя ли найти разгадку в пропорциях двойных кругов на Марлборо-Даунс. Много лет потребовалось, чтобы разгадать эту тайну. Первым делом я решил нащупать какую-либо связь древних мер с радиусом и окружностью моих кругов.

Земные меры

К счастью, Ливио Стеккини уже вычислил номинальные метрические величины ряда важных мер Древнего Египта и остального античного мира. Ниже приводится их список:

В дополнение к вышеназванным я решил также рассмотреть две стандартные английские меры — фут (0,3048 метра) и фарлонг (201,168 метра), считающиеся древними, и открытый профессором Томом мегалитический ярд (0,829 метра).

Когда я перевел размеры моих кругов в эти древние меры, стало ясно, что нужно снова немного подогнать их номинальный радиус — с 9576,78 метра до 9574,95 метра. Это не выходит за рамки погрешности. Окружность была вычислена, исходя из древнеегипетского номинального значения пи, равного 22/7, что дает размеры кругов в различных единицах измерения:

Мегалитический ярд

Этот список, казалось, открывал ряд интересных возможностей, но больше всего меня поразило число мегалитических ярдов в радиусе (11 550) и в окружнос ти (72 600), поскольку я получил целые числа, делимые на 10. Это показалось мне необычным и заслуживающим дополнительного исследования.

Значение чисел в подобных обстоятельствах лучше всего оценивать, приводя индивидуальные числа к их первичным множителям. Этот процесс изучается в школе и означает деление числа на его наименьший делимый множитель. Этот процесс повторяется до тех пор, пока не будут использованы все множители, выраженные целыми числами. Например, число двенадцать можно разделить на два и получить шесть. Шесть можно затем разделить на два и получить три, а три — разделить на три и получить один. Значит, множителями двенадцати являются 2×2×3×1. Число один обычно не принимается во внимание, поскольку все числа можно разделить на единицу.

Чтобы сделать этот процесс понятнее, я пройду его шаг за шагом и рассмотрю выводы, которые могут быть сделаны. Числа мегалитических ярдов в радиусе окружности могут быть разложены на множители следующим образом:

Радиус (11 550) Окружность (72 600)

11 550:2=5775 72 600 2=36 300

5775:3=1925 36 300:2=18 150

1925:5=385 18 150:2=9075

385:5=77 9075:3=3025

77:7=11 3025:5=605

11:11=col1¦0:5=121

121:11=11

11:11=1

Этот процесс дает следующие множители радиуса 2×3×5×5×7×11 Множители окружности, 2×2×2×3×5×5×11×11. Если разделить и радиус, и окружность на число общих множителей 2×3×5×5×11 (или 1650), то получится:

Радиус Окружность

11 550:1650=7 72 600:1650=44(2×22)

Отношение 7:11 неизбежно возникает из того факта, что я выбрал значение пи (π) = 22:7, которое использовалось в Древнем Египте. Формула вычисления длины окружности из ее радиуса: 2πr, где r — длина радиуса. В случае круга с радиусом в семь единиц мы получаем 2×(22:7)×7. Семерки сокращаются, и окружность оказывается равной 2×22 = 44 единицы. Этими единицами могут быть миллиметры, мили или километры — не имеет зна чения, что именно. Принцип остается неизменным. Любой круг радиусом в 7 единиц даст окружность в 44 единицы, если значение пи равно 22:7.

Как мы уже видели, древние предпочитали получать отношения целых чисел в своих памятниках и постройках. В данном случае они использовали мегалитические ярды, выбрав целое число радиуса, делимое на 7, и таким образом длина окружности также выражается целым числом.

Для практических целей топографии идеальна базовая единица измерения где-то между 0,5 метра и 1 метром, которая поддается дальнейшему делению. В эту категорию попадают стандартный английский ярд, царский локоть и мегалитический ярд профессора Тома. Как мы знаем, круги Марлборо выдержаны в пропорции целых чисел к размерам Земли, а мегалитический ярд — в про порции целых чисел к кругам, следовательно, мегалитическии ярд находится в пропорции целых чисел к размерам Земли. Он является единственной сопоставимой мерой, отвечающей этим критериям.

Том получил свою единицу измерения в результате статистического анализа примерно 300 каменных кругов по всей Британии. В его книге «Мегалитические сооружения в Британии» 1 мегалитический ярд равен 2,720 ± 0,003 фута, или 829,04 ± 0,91 438 миллиметра. Значение открытия Тома просто поразительно. Оно подразумевает, что все круги были сооружены с помощью одной и той же системы мер, очевидна связь замысла и конструкции каменных кругов по всей стране на протяжении более чем тысячелетия, но археологи до сих пор не желают признать это.

Перейти на страницу:

Похожие книги

Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука
Мозг и его потребности. От питания до признания
Мозг и его потребности. От питания до признания

Написать книгу, посвященную нейробиологии поведения, профессора Дубынина побудил успех его курса лекций «Мозг и потребности».Биологические потребности – основа основ нашей психической деятельности. Постоянно сменяя друг друга, они подталкивают человека совершать те или иные поступки, ставить цели и достигать их. Мотиваторы как сиюминутных, так и долгосрочных планов каждого из нас, биологические потребности движут экономику, науку, искусство и в конечном счете историю.Раскрывая темы книги: голод и любопытство, страх и агрессия, любовь и забота о потомстве, стремление лидировать, свобода, радость движений, – автор ставит своей целью приблизить читателя к пониманию собственного мозга и организма, рассказывает, как стать умелым пользователем заложенных в нас природой механизмов и программ нервной системы, чтобы проявить и реализовать личную одаренность.Вы узнаете:• Про витальные, зоосоциальные и потребности саморазвития человека.• Что новая информация для нашего мозга – это отдельный источник положительных эмоций.• Как маркетологи, политики и религиозные деятели манипулируют нами с помощью страха. Поймете, как расшифровывать такие подсознательные воздействия.

Вячеслав Альбертович Дубынин , Вячеслав Дубынин

Научная литература / Научно-популярная литература / Образование и наука