Читаем Страх физики. Сферический конь в вакууме полностью

Несмотря на то что каждый электрон заряжен отрицательно и между электронами действует сила электростатического отталкивания, внутри кристаллической решетки на электроны действует также и сила притяжения со стороны атомных ядер, которая не дает электронам вылететь из кристалла. При низкой температуре, когда энергия теплового движения электронов очень мала по сравнению с энергией связи кристаллической решетки, электроны начинают объединяться в пары, которые, в свою очередь, образуют единый когерентный электронный конденсат. Если теперь подать на кристалл разность потенциалов, то есть подключить его к электрической батарее, электронный конденсат начнет двигаться как единое целое. Если любой из электронов сталкивается с препятствием, то энергия, необходимая, чтобы остановить этот электрон, то есть выбить его из когерентного ансамбля, оказывается гораздо больше энергии этого электрона. Электрон не в состоянии преодолеть потенциальный барьер и выскочить из ансамбля, поэтому он вынужден продолжать движение вместе со всеми остальными электронами. Таким образом, все электроны синхронно перемещаются в одном направлении, а кристаллическая решетка не оказывает их движению никакого сопротивления.

На основании описанного поведения электронного конденсата можно попытаться сделать ряд предсказаний относительно свойств сверхпроводящих материалов. Одно из таких свойств носит название эффекта Мейснера. Немецкий физик Вальтер Мейснер обнаружил его в 1933 году. Суть эффекта заключается в том, что если поместить сверхпроводник рядом с магнитом, то сверхпроводник будет прилагать все усилия, чтобы не пустить внутрь себя магнитное поле. Это происходит вследствие того, что электроны в сверхпроводнике, не встречая никакого сопротивления, перемещаются под действием магнитного поля так, чтобы создаваемое в результате их движения собственное магнитное поле полностью компенсировало внешнее. Фактически собственное магнитное поле присутствует только на поверхности сверхпроводника и имеет такую конфигурацию, чтобы суммарное поле внутри кристалла оставалось равным нулю.

Таким образом, если поднести к сверхпроводнику магнит, сверхпроводник сформирует у себя на поверхности магнитное поле, являющееся точным отражением магнитного поля подносимого магнита. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит одинаковой полярности и точно такого же размера. Если магнит повернут к сверхпроводнику, например, северным полюсом, то его отражение тоже будет повернуто к магниту северным полюсом. На этом эффекте основан замечательный демонстрационный опыт: на кусок вещества кладется магнит, затем вещество охлаждается до сверхпроводящего состояния, и магнит начинает отталкиваться от сверхпроводника и воспаряет над ним подобно гробу Магомета.

Существует еще один способ описания этого явления. Свет, как я уже отмечал ранее, представляет собой нечто иное, как электромагнитные волны. Покачивание заряда или периодическое изменение электрического или магнитного полей порождает электромагнитные волны. Электромагнитные волны распространяются со скоростью света, потому что этого требуют законы электромагнетизма, но именно по этой причине, несмотря на то, что электромагнитная волна может переносить энергию, с ней невозможно связать никакую массу. На квантовом уровне электромагнитная волна представляется набором частиц, называемых фотонами, которые также не имеют массы.

Магнитное поле не может проникнуть внутрь сверхпроводника, потому что фотоны, соответствующие на микроуровне этому макроскопическому полю, пытаясь пройти сквозь строй когерентных электронов, изменяют свои свойства. Они начинают вести себя так, как если бы они имели массу! Ситуация аналогична попытке проехать на роликах по песку. Пока вы едете по асфальту, ролики катятся свободно, но стоит вам съехать на рыхлый песок, как колеса начинают в нем вязнуть. Если кто-нибудь будет вас толкать, то он почувствует, что вы как будто стали гораздо тяжелее, съехав с асфальта на песок. Примерно то же самое происходит и с фотонами, которым гораздо труднее двигаться в сверхпроводнике из-за «налипшей» на них эффективной массы. В результате фотоны не проникают вглубь сверхпроводника, и магнитное поле остается только на его поверхности.

Наконец мы готовы вернуться к Большому адронному коллайдеру. Как я сказал, этот монстр был построен для того, чтобы узнать, почему все элементарные частицы имеют массу. Прочитав предыдущие несколько страниц, вы можете подумать, что эти две темы никак друг с другом не связаны, но на самом деле вполне вероятно, что решение загадки масс элементарных частиц аналогично причине, по которой сверхпроводящие материалы выталкивают магнитные поля.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука