На первый взгляд может показаться, что опыт с образованием тепла в результате трения (например, двух кусков дерева друг о друга, как делали первобытные люди, чтобы добыть огонь) является смертным приговором теплороду. Но на самом деле это не совсем так: если бы удалось доказать, что в результате трения изменяются свойства трущихся веществ (их теплоемкость), то смертный приговор теплороду пришлось бы, но крайней мере, отсрочить. Решающим наблюдением, возвестившим об ошибочности теории теплорода, было наблюдение известного американского естествоиспытателя и политического деятеля графа Бенджамина Румфорда (1753–1814), сделанное им в 1798 г. Предоставим слово автору наблюдения — Румфорду: «Недавно, будучи обязанным наблюдать за сверлением пушки на заводах военного арсенала в Мунче, я был удивлен очень значительной степенью теплоты, которую приобретала медная пушка за короткое время сверления; еще интенсивнее (гораздо интенсивнее, чем теплота кипящей воды, как я обнаружил опытом) была теплота металлических стружек, отделенных от пушки при сверлении…
Откуда приходит теплота, фактически произведенная в вышеупомянутом механическом процессе?
Доставляется ли она металлическими стружками, которые отделяются при сверлении от твердой массы металла?
Если бы это было так, то, согласно современному учению о скрытой теплоте и о теплороде, теплоемкость их не только должна была измениться, но само изменение это должно быть достаточно велико, чтобы объяснить всю произведенную теплоту.
Но никакого такого изменения не было; я обнаружил это, взяв равные по весу количества этих стружек, а также тонких полосок той же самой металлической болванки, отделенных мелкой пилкой, и положив их при одинаковой температуре (температуре кипящей воды) в сосуды с холодной водой, взятой в одинаковых количествах (например, при температуре 59,5° по Фаренгейту[295]
); вода, в которую были положены стружки, судя по всему, но нагревалась больше или меньше, чем другая часть воды, в которую были положены полоски металла.Обсуждая этот предмет, мы не должны забывать учета того самого замечательного обстоятельства, что источник теплоты, порожденный трением, оказался в этих экспериментах явно неисчерпаемым…
Совершенно необходимо добавить, что это нечто, которое любое изолированное тело или система тел может непрерывно поставлять без ограничения, не может быт:, материальной субстанцией; и мне кажется чрезвычайно трудным, если не совершенно невозможным, создать какую-либо точную идею о чем-то, что в состоянии возбуждаться и передаваться подобно тому, как возбуждается и передается в этих экспериментах теплота, если только не допустить, что это что-то есть движение»[296]
.Итак, из простых и ясных опытов Румфорда следует, что теплорода не существует, а теплота есть движение. Спустя почти 50 лет после опытов Румфорда немецкий естествоиспытатель, врач Юлиус Роберт Майер (1814–1878) сформулировал (в 1842 г.) закон эквивалентности механической работы и теплоты. Другими словами он первым сформулировал закон сохранения энергии. А в 1843–1850 гг. английский естествоиспытатель, пивовар Джеймс Прескотт Джоуль (1818–1889) опытным путем с высокой степенью точности установил механический эквивалент тепла: 427 кгс · м/ккал. Последующие эксперименты внесли небольшую поправку к величине механического эквивалента тепла, найденного Джоулем, которая теперь принимается равной 426,935 кгс · м/ккал. На рис. 35 представлена схема опыта Джоуля. Существо опыта следующее. Груз G, падая с высоты h, производит механическую работу Gh. Вся эта работа расходуется на трение между лопастями приводимой во вращение мешалки 2 и водой, заполняющей сосуд 1. Тепло, приобретенное водой, определяется по повышению ее температуры. Очевидно, что искомое значение механического эквивалента тепла J может быть определено по уравнению
где Gh, кгс м — механическая работа, L, кгс — вес воды в сосуде 1, ккал/кгс-°С — весовая теплоемкость воды, близкая к единице; Δt, °С — повышение температуры воды.
В дальнейшем было установлено, что механическая и тепловая энергия — две формы энергии из большого числа возможных ее форм. В частности, кроме механической и тепловой энергии, существуют: химическая энергия, которой обладает, например, любое Органическое топливо, выделяющее при сжигании теплоту; ядерная (атомная) энергия — внутренняя энергия атомных ядер, освобождающаяся в виде теплоты в результате ядерных реакций; электромагнитная энергия, о которой речь будет ниже.