Читаем Страницы истории науки и техники полностью

Ньютон рассматривал математику как абстрагированное отображение физических (механических) процессов. Он ввел два типа переменных величии: независимую переменную (аргумент), под которой понимал, учитывая, что все процессы и явления совершаются во времени, абсолютное время, и зависимую переменную (функцию)[135], однозначно определяемую независимой переменной. Переменные Ньютон назвал флюентами (лат. fluo — течь, изменяться); все зависимые переменные в качестве независимой переменной имели абсолютное время. Скорости изменения флюент Ньютон назвал флюксиями. Таким образом, если под флюентой понимается скорость механического движения, то флюксия будет представлять собой ускорение — отношение бесконечно малого изменения скорости к бесконечно малому отрезку времени, в течение которого произошло изменение скорости. Отношение двух бесконечно малых величин, именуемое теперь производной (процесс определения производной называется дифференцированием), является, как этого и следовало ожидать по смыслу, не бесконечно малой, а конечной величиной. Элементарное (бесконечное малое) изменение переменной величины (например, скорости, ускорения, времени) Ньютон именовал моментом.

Ньютон является вместе с Лейбницем не только основоположником дифференциального и интегрального исчисления. Ньютону также принадлежат работы, открывшие широкие возможности применения этих новых математических методов. В их числе — определение флюксий (производных) для различных типов уравнений, связывающих зависимую переменную (функцию) с независимой (аргументом). Заметим, кстати, что если бы мы воспользовались современной терминологией (терминами, помещенными в скобках), то для современных читателей предыдущая фраза выглядела бы гораздо более удобной: в их числе — определение производных для различных типов функциональных зависимостей.

В частности, Ньютон решил задачу определения производной для степенной функции у = хn (где х — аргумент, у — зависимая переменная функция, n — показатель степени), а также для некоторых других функций.

Ньютон и Лейбниц предложили и ввели в практику интегральное исчисление, интегрирование (лат. integer — целый), являющееся обратным действием по отношению к дифференцированию: если дифференцирование есть определение производной какой-либо функции, т. е., как следует из сказанного выше, определение предела отношения приращения функции к приращению аргумента при стремлении последнего к нулю, или производная

то интегрирование есть определение первоначальной функциональной зависимости y=F(x) по уравнению производной y'=f(x) или

где с — константа интегрирования.

Таким образом, если требуется, например, найти уравнение, определяющее скорость движения тела в зависимости от времени, зная как изменяется по ходу времени пройденный телом путь (именно такого рода данные, а следовательно, и расчетное уравнение можно получить опытным путем, давая телу свободно падать под действием силы тяжести), то необходимо применить дифференциальное исчисление. Если же, наоборот, уравнение, связывающее скорость движения тела и время, известно и нужно определить зависимость пройденного телом пути от времени, то необходимо воспользоваться интегральным исчислением.

Следует заметить, что Ньютон и Лейбниц, разрабатывая дифференциальное и интегральное исчисление, использовали различный подход к проблеме; подход Ньютона можно было бы назвать физическим (у него главную роль играло понятие скорости), Лейбниц же подходил к проблеме как геометр (рассматривая задачу о проведении касательной к данной точке кривой). Естественно, что они пользовались различными символами и терминологией. В дальнейшем получили распространение символы и терминология Лейбница. Они используются в математике и в настоящее время.

Ньютону принадлежит решение важной практической задачи — преобразования некоторых функций, в том числе логарифмической, показательной (аргумент — показатель степени), некоторых тригонометрических, в бесконечные степенные ряды (так называемое разложение в ряды).

Имя Ньютона носит формула (бином Ньютона), дающая возможность представить двучлен в некоторой степени (а + b)n в виде суммы степеней слагаемых. Например, в простейшем случае для n = 2 получается хорошо известное выражение (а+b)2 = а2+2аb+b2. Собственно говоря, формула, очень близкая по своему виду к биному Ньютона, была известна задолго до Ньютона. Заслуга Ньютона заключается в том, что он усовершенствовал ее, сделав применимой не только для целых, положительных значений показателя степени n, как это было раньше, но также и для дробного и отрицательного показателя.

Перейти на страницу:

Похожие книги

Сериал как искусство. Лекции-путеводитель
Сериал как искусство. Лекции-путеводитель

Просмотр сериалов – на первый взгляд несерьезное времяпрепровождение, ставшее, по сути, частью жизни современного человека.«Высокое» и «низкое» в искусстве всегда соседствуют друг с другом. Так и современный сериал – ему предшествует великое авторское кино, несущее в себе традиции классической живописи, литературы, театра и музыки. «Твин Пикс» и «Игра престолов», «Во все тяжкие» и «Карточный домик», «Клан Сопрано» и «Лиллехаммер» – по мнению профессора Евгения Жаринова, эти и многие другие работы действительно стоят того, что потратить на них свой досуг. Об истоках современного сериала и многом другом читайте в книге, написанной легендарным преподавателем на основе собственного курса лекций!Евгений Викторович Жаринов – доктор филологических наук, профессор кафедры литературы Московского государственного лингвистического университета, профессор Гуманитарного института телевидения и радиовещания им. М.А. Литовчина, ведущий передачи «Лабиринты» на радиостанции «Орфей», лауреат двух премий «Золотой микрофон».

Евгений Викторович Жаринов

Искусствоведение / Культурология / Прочая научная литература / Образование и наука
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука
Япония Нестандартный путеводитель
Япония Нестандартный путеводитель

УДК 520: 659.125.29.(036). ББК 26.89я2 (5Япо) Г61Головина К., Кожурина Е.Г61 Япония: нестандартный путеводитель. — СПб.: КАРО, 2006.-232 с.ISBN 5-89815-723-9Настоящая книга представляет собой нестандартный путеводитель по реалиям современной жизни Японии: от поиска жилья и транспорта до японских суеверий и кинематографа. Путеводитель адресован широкому кругу читателей, интересующихся японской культурой. Книга поможет каждому, кто планирует поехать в Японию, будь то путешественник, студент или бизнесмен. Путеводитель оформлен выполненными в японском стиле комиксов манга иллюстрациями, которые нарисовала Каваками Хитоми; дополнен приложением, содержащим полезные телефоны, ссылки и адреса.УДК 520: 659.125.29.(036). ББК 26.89я2 (5Япо)Головина Ксения, Кожурина Елена ЯПОНИЯ: НЕСТАНДАРТНЫЙ ПУТЕВОДИТЕЛЬАвтор идеи К.В. Головина Главный редактор: доцент, канд. филолог, наук В.В. РыбинТехнический редактор И.В. ПавловРедакторы К.В. Головина, Е.В. Кожурина, И.В. ПавловКонсультант: канд. филолог, наук Аракава ЁсикоИллюстратор Каваками ХитомиДизайн обложки К.В. Головина, О.В. МироноваВёрстка В.Ф. ЛурьеИздательство «КАРО», 195279, Санкт-Петербург, шоссе Революции, д. 88.Подписано в печать 09.02.2006. Бумага офсетная. Печать офсетная. Усл. печ. л. 10. Тираж 1 500 экз. Заказ №91.© Головина К., Кожурина Е., 2006 © Рыбин В., послесловие, 2006 ISBN 5-89815-723-9 © Каваками Хитоми, иллюстрации, 2006

Елена Владимировна Кожурина , Ксения Валентиновна Головина , Ксения Головина

География, путевые заметки / Публицистика / Культурология / Руководства / Справочники / Прочая научная литература / Документальное / Словари и Энциклопедии