Читаем Стратегические игры полностью

В первой группе глав (с 3-й по 7-ю) мы сконструируем и обсудим самые важные из этих понятий и методов. В главе 3 рассмотрим игры с последовательными ходами и введем методы, такие как дерево игры и обратные рассуждения, используемые для анализа и решения подобных игр. В главе 4 и главе 5 перейдем к играм с одновременными ходами и сформулируем для них свой набор концепций: таблица выигрышей, доминирование и равновесие Нэша. Обе главы сфокусированы на играх, в которых игроки используют чистые стратегии; в главе 4 мы ограничим игроков конечным множеством чистых стратегий, а в главе 5 введем стратегии, представляющие собой непрерывные переменные. Кроме того, в главе 5 мы рассмотрим противоречивые эмпирические данные, концептуальную критику и контраргументы против равновесия Нэша, а также его важную альтернативу — рационализируемость. В главе 6 покажем, как анализировать игры с последовательными и одновременными ходами с помощью методов, представленных в главах 3−5. В главе 7 обсудим игры с одновременными ходами, требующие применения метода рандомизации или смешанных стратегий. Мы начнем с введения основных идей о смешивании стратегий в играх «два на два», разработаем простейшие методы поиска равновесий Нэша в смешанных стратегиях, а затем рассмотрим более сложные примеры, содержащие эмпирические данные о смешивании стратегий.

В главах 3−7 сформулированы базовые концепции и методы: 1) правильные построения прогнозных рассуждений для игр с последовательными ходами; 2) равновесные стратегии (чистые и смешанные) для игр с одновременными ходами. Вооружившись этими концепциями и инструментами, вы сможете применить их в процессе изучения более широких классов игр и стратегий, представленных в главах 8−12.

В главе 8 анализируется ситуация, когда игроки находятся в условиях неопределенности или располагают асимметричной информацией. Мы рассмотрим стратегии борьбы с риском и возможность его стратегического использования. Кроме того, изучим такие важные стратегии, как сигнализирование и скрининг, применяемые для манипулирования и получения информации. Мы разработаем приемлемое обобщение равновесия Нэша в условиях неопределенности (байесовское равновесие Нэша) и покажем различные типы равновесий, которые могут возникнуть в данном контексте. В главе 9 мы продолжим изучать роль манипуляций игроков в играх и рассмотрим, как они, воспользовавшись преимуществом первого хода и сделав стратегический ход, умело воздействуют на правила игры. Такие ходы бывают трех типов — обязательства, угрозы и обещания, и их успех в значительной мере зависит от их достоверности; мы опишем в общих чертах некоторые способы ее обеспечения.

В главе 10 мы изучим самую известную стратегическую игру — дилемму заключенных — и проанализируем, насколько сотрудничество в такой игре может быть устойчивым, особенно в случае повторяющегося или постоянного взаимодействия. Затем в главе 11 рассмотрим стратегическое взаимодействие в больших группах, а не в парах или небольших группах игроков, иными словами, игры, касающиеся проблем коллективного действия, когда действия каждого игрока оказывают влияние (в одних случаях полезное, в других — пагубное) на остальных игроков. Как правило, исход таких игр нельзя назвать лучшим с точки зрения общества в целом. Мы объясним природу подобных исходов и опишем несколько простых методов, которые могут их улучшить.

Все эти теории и области их применения основаны на предположении, что игроки полностью осознают характер игры и применяют стратегии, максимально соответствующие их целям в этой игре. Столь рационально оптимальное поведение порой предъявляет к игроку слишком высокие требования в плане анализа информации и вычисления стратегий, чтобы можно было поверить в то, будто именно так люди себя ведут в реальной жизни. Поэтому в главе 12 игры рассматриваются под совершенно другим углом. Здесь игроки не просчитывают ходы и не придерживаются оптимальных стратегий. Вместо этого каждый игрок привязан (как будто генетически предрасположен) к конкретной стратегии. Состав той или иной популяции отличается высоким уровнем многообразия, поэтому разные игроки применяют различные предопределенные стратегии. Когда такие игроки пересекаются друг с другом и активизируют свои стратегии, какие из них работают эффективнее? А если более успешные стратегии широко распространятся в данной группе, будь то посредством наследования или имитации, то как будет выглядеть со временем структура этой группы? Оказывается, такая эволюционная динамика во многих случаях отдает предпочтение именно тем стратегиям, которые использовали бы рациональные игроки, демонстрирующие оптимальное поведение. Стало быть, наш анализ эволюционных игр косвенно поддерживает те теории оптимального стратегического выбора и равновесия, которые мы изучали в предыдущих главах.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг