Читаем Стратегические игры полностью

Если Энн выберет ход «вперед», а Крис — «рискованно», произойдет случайное событие, например подбрасывание монеты, и исход игры будет зависеть от того, выпадет орел или решка. Этот аспект игры представляет собой пример внешней неопределенности и отображается на дереве игры посредством введения внешнего игрока под названием «природа». Ему передается контроль над случайным событием, и он как будто выбирает одну из ветвей, каждую с вероятностью 50 %. Вероятность здесь определяется посредством случайного события одного типа, а именно подбрасывания монеты, но в других обстоятельствах могут использоваться и события иных типов. Например, в случае бросания игральных костей «природа» могла бы указать шесть возможных вариантов, каждый с вероятностью 162/3 процента. Использование игрока под названием «природа» позволяет ввести в игру фактор внешней неопределенности и предоставляет в наше распоряжение механизм, который делает возможным наступление событий, находящихся вне контроля реальных участников игры.

Вы можете определить количество различных путей, существующих на дереве игры, передвигаясь по следующим друг за другом ветвям. На рис. 3.1 каждый путь приводит к конечной точке игры за конечное число ходов. Конечная точка не является обязательным элементом всех игр, некоторые из них теоретически могут вестись до бесконечности. Но в большинстве наших примеров представлены конечные игры.

В. Исходы и выигрыши

В последнем узле каждого пути, так называемом концевом узле, ни один игрок не может сделать очередной ход. (Обратите внимание, что именно этим концевые узлы отличаются от узлов действия.) Вместо этого мы показываем в этом узле исход определенной последовательности действий, выраженный в выигрышах игроков. Выигрыши наших четырех героев перечислены в таком порядке: Энн, Боб, Крис, Деб. Важно указать, какой выигрыш соответствует каждому игроку. Обычно выигрыши принято указывать в том порядке, в каком игроки делают ходы. Однако иногда этот метод бывает неоднозначным; в нашем примере непонятно, кто должен делать следующий ход, Боб или Крис. Поэтому мы перечислили их в алфавитном порядке (англ. Ann, Bob, Chris, Deb), а кроме того, использовали цветную маркировку информации об игроках. Так, имя Энн, ее варианты выбора и выигрыши выделены черным цветом, Боба — темно-серым, Криса — светло-серым, а Деб — серым. При построении деревьев для игр, которые вы будете анализировать, можно выбрать любую понравившуюся вам систему обозначений, но вы должны четко сформулировать и объяснить ее тому, кто будет читать дерево игры.

Выигрыш — это числовая величина, и, как правило, для каждого игрока чем она больше, тем лучше исход игры. Таким образом, для Энн самый нижний путь (выигрыш 3) лучше самого верхнего (выигрыш 2). Однако выигрыши разных игроков не обязательно должны быть сопоставимы. В данном примере неочевидно, что в конце самого верхнего пути Боб (выигрыш 7) добивается большего, чем Энн (выигрыш 2). Иногда, например если выигрыш исчисляется в денежных единицах, сравнение выигрышей может иметь смысл.

Игроки используют информацию о выигрышах при выборе доступных действий. Включение случайного события (выбор, сделанный «природой») означает, что игрокам необходимо определить, что они получат в среднем, когда «природа» сделает свой ход. Например, если Энн выберет «вперед» в качестве первого хода в игре, Крис может выбрать «рискованно», что приведет к подбрасыванию монеты и выбору «природой» варианта «хорошо» или «плохо». В такой ситуации Энн в половине случаев может рассчитывать на выигрыш 6 и в половине случаев — на выигрыш 2; иными словами, статистическое среднее, или ожидаемый выигрыш, составит 4 = (0,5 × 6) + (0,5 × 2).

Г. Стратегии

И наконец, мы используем дерево игры, представленное на рис. 3.1, чтобы объяснить концепцию стратегии. Единичное действие, предпринятое игроком в узле, называется ходом. Но игроки могут и должны составлять планы последовательности выполнения ходов, которые они намерены сделать во всех возможных случаях в ходе игры. Такой план действий и называется стратегией.

На данном дереве игры Боб, Крис и Деб получают возможность сделать ход максимум один раз; например, Крис будет ходить только в случае, если Энн в качестве первого хода выберет «вперед». Для этих игроков между ходом и стратегией нет разницы. Мы можем определить ход, указав условие, при котором он будет сделан; так, в случае Боба может быть следующая стратегия: «Выбрать 1, если Энн выберет “стоп”». Однако у Энн есть две возможности сделать ход, поэтому ее стратегия требует более полного описания. Одна из стратегий Энн: «Выбрать “стоп”, а если Боб выберет 1, выбрать “вниз”».

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг