Читаем Стратегические игры полностью

Обратите внимание, что эта игра — еще один пример дилеммы заключенных. Существует единственное равновесие Нэша, при котором все игроки получают выигрыш 2. Однако у «уличного сада» есть еще один исход (при котором все три соседки инвестируют в сад), обеспечивающий всем трем участницам более высокие выигрыши 5. Хотя каждой из них было бы выгодно поучаствовать в создании сада, ни у кого из них нет индивидуального стимула для этого. В итоге такие сады либо вообще не сажают, либо делают это за счет налоговых поступлений, поскольку городская администрация может взыскать с жителей города такой налог. В главе 11 мы рассмотрим другие дилеммы коллективного действия и изучим некоторые методы их решения.

Равновесие Нэша в игре «уличный сад» можно также найти посредством анализа наилучших ответов, как показано на рис. 4.9. Так как доминирующая стратегия каждой участницы игры — «не вносить вклад», все наилучшие ответы Эмили находятся в ее строке «не вносить вклад», Нины — в ее колонке «не вносить вклад», а Талии — на ее странице «не вносить вклад». Ячейка в правом нижнем углу содержит три наилучших ответа, а значит, это и есть равновесие Нэша.


Рис. 4.9. Анализ наилучших ответов в игре «уличный сад»

6. Множество равновесий в чистых стратегиях

В каждой из игр, рассмотренных в предыдущих разделах, было единственное равновесие Нэша в чистых стратегиях. Однако в целом в играх необязательно должно быть единственное равновесие Нэша. Мы проиллюстрируем этот результат посредством класса игр, имеющих много областей применения, который можно обозначить как координационные игры. У их участников есть общие интересы (хотя и не всегда полностью совпадающие), но поскольку игроки действуют независимо друг от друга (в силу характера некооперативных игр), координация действий, необходимых для достижения общего предпочтительного исхода, проблематична.

А. Встретятся ли Гарри и Салли? Чистая координация

Для того чтобы проиллюстрировать эту идею, давайте представим себе двух студентов-старшекурсников, встретившихся в университетской библиотеке[50]. Они понравились друг другу и хотели бы продолжить общение, но им нужно идти в разные аудитории на лекции. Гарри и Салли договариваются вместе выпить кофе после занятий, которые заканчиваются в 16:30. Во время лекций оба осознают, что из-за волнения забыли договориться о месте встречи. Существует два возможных варианта: Starbucks и Local Latte. К сожалению, эти кафе расположены на противоположных концах большого кампуса, поэтому оказаться в обоих примерно в одно и то же время невозможно. Кроме того, Гарри и Салли не обменялись телефонными номерами, из-за чего не могут отправить друг другу сообщения. Что же нужно сделать каждому из них?

На рис. 4.10 эта ситуация представлена в виде игры с матрицей выигрышей. У каждого игрока два варианта выбора: Starbucks и Local Latte. Выигрыш для каждого равен 1, если они встретятся, и 0, если нет. Анализ наилучших ответов позволяет быстро определить, что в игре два равновесия Нэша: одно — при котором Салли и Гарри выберут Starbucks, и второе — при котором они выберут Local Latte. Для обоих важно достичь одного из этих равновесий, причем какого — не играет роли, поскольку оба равновесия обеспечивают одинаковые выигрыши. Главное, чтобы они скоординированно выбрали одно и то же действие, неважно какое. Именно поэтому такую игру называют игрой с чистой координацией.


Рис. 4.10. Чистая координация


Но смогут ли Гарри и Салли успешно скоординировать свои действия? Или в конечном счете они окажутся в разных кафе и каждый будет думать, что другой его подвел? Увы, такой риск существует. Гарри может решить, что Салли отправится в Starbucks, потому что она что-то говорила о занятиях, которые проходят на той стороне кампуса, где расположен Starbucks. Но у Салли может быть противоположное убеждение относительно того, что сделает Гарри. При наличии множества равновесий Нэша игрокам при выборе одного из них необходим какой-то способ скоординировать свои убеждения или ожидания в отношении действий друг друга.

Эта ситуация аналогична тому, что произошло с героями истории «Какая шина?», рассказанной в главе 1, где мы обозначили метод координации термином «фокальная точка». В данном контексте одно из двух кафе может быть широко известно как место встречи студентов. Однако недостаточно, чтобы Гарри просто об этом знал. Он должен знать, что Салли знает, и что она знает, что он знает, и т. д. Иными словами, их ожидания должны сходиться в фокальной точке. В противном случае Гарри может сомневаться в том, куда пойдет Салли, поскольку он не знает, что она думает о том, куда пойдет он. Подобные сомнения могут возникнуть на третьем, или четвертом, или еще более высоком уровне размышлений о размышлениях[51].

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг