Обратите внимание, что эта игра — еще один пример дилеммы заключенных. Существует единственное равновесие Нэша, при котором все игроки получают выигрыш 2. Однако у «уличного сада» есть еще один исход (при котором все три соседки инвестируют в сад), обеспечивающий всем трем участницам более высокие выигрыши 5. Хотя каждой из них было бы выгодно поучаствовать в создании сада, ни у кого из них нет индивидуального стимула для этого. В итоге такие сады либо вообще не сажают, либо делают это за счет налоговых поступлений, поскольку городская администрация может взыскать с жителей города такой налог. В главе 11
мы рассмотрим другие дилеммы коллективного действия и изучим некоторые методы их решения.Равновесие Нэша в игре «уличный сад» можно также найти посредством анализа наилучших ответов, как показано на рис. 4.9. Так как доминирующая стратегия каждой участницы игры — «не вносить вклад», все наилучшие ответы Эмили находятся в ее строке «не вносить вклад», Нины — в ее колонке «не вносить вклад», а Талии — на ее странице «не вносить вклад». Ячейка в правом нижнем углу содержит три наилучших ответа, а значит, это и есть равновесие Нэша.
Рис. 4.9.
Анализ наилучших ответов в игре «уличный сад»6. Множество равновесий в чистых стратегиях
В каждой из игр, рассмотренных в предыдущих разделах, было единственное равновесие Нэша в чистых стратегиях. Однако в целом в играх необязательно должно быть единственное равновесие Нэша. Мы проиллюстрируем этот результат посредством класса игр, имеющих много областей применения, который можно обозначить как координационные игры
. У их участников есть общие интересы (хотя и не всегда полностью совпадающие), но поскольку игроки действуют независимо друг от друга (в силу характера некооперативных игр), координация действий, необходимых для достижения общего предпочтительного исхода, проблематична.Для того чтобы проиллюстрировать эту идею, давайте представим себе двух студентов-старшекурсников, встретившихся в университетской библиотеке[50]
. Они понравились друг другу и хотели бы продолжить общение, но им нужно идти в разные аудитории на лекции. Гарри и Салли договариваются вместе выпить кофе после занятий, которые заканчиваются в 16:30. Во время лекций оба осознают, что из-за волнения забыли договориться о месте встречи. Существует два возможных варианта: Starbucks и Local Latte. К сожалению, эти кафе расположены на противоположных концах большого кампуса, поэтому оказаться в обоих примерно в одно и то же время невозможно. Кроме того, Гарри и Салли не обменялись телефонными номерами, из-за чего не могут отправить друг другу сообщения. Что же нужно сделать каждому из них?На рис. 4.10 эта ситуация представлена в виде игры с матрицей выигрышей. У каждого игрока два варианта выбора: Starbucks и Local Latte. Выигрыш для каждого равен 1, если они встретятся, и 0, если нет. Анализ наилучших ответов позволяет быстро определить, что в игре два равновесия Нэша: одно — при котором Салли и Гарри выберут Starbucks, и второе — при котором они выберут Local Latte. Для обоих важно достичь одного из этих равновесий, причем какого — не играет роли, поскольку оба равновесия обеспечивают одинаковые выигрыши. Главное, чтобы они скоординированно выбрали одно и то же действие, неважно какое. Именно поэтому такую игру называют игрой с чистой координацией
.Рис. 4.10.
Чистая координацияНо смогут ли Гарри и Салли успешно скоординировать свои действия? Или в конечном счете они окажутся в разных кафе и каждый будет думать, что другой его подвел? Увы, такой риск существует. Гарри может решить, что Салли отправится в Starbucks, потому что она что-то говорила о занятиях, которые проходят на той стороне кампуса, где расположен Starbucks. Но у Салли может быть противоположное убеждение относительно того, что сделает Гарри. При наличии множества равновесий Нэша игрокам при выборе одного из них необходим какой-то способ скоординировать свои убеждения или ожидания в отношении действий друг друга.
Эта ситуация аналогична тому, что произошло с героями истории «Какая шина?», рассказанной в главе 1
, где мы обозначили метод координации термином «фокальная точка». В данном контексте одно из двух кафе может быть широко известно как место встречи студентов. Однако недостаточно, чтобы Гарри просто об этом знал. Он должен знать, что Салли знает, и что она знает, что он знает, и т. д. Иными словами, их ожидания должны