Читаем Структура реальности. Наука параллельных вселенных полностью

Гильберту предстояло пережить полное разочарование. Тридцать один год спустя Курт Гёдель произвел революцию в теории доказательств радикальным отрицательным результатом, от которого до сих пор не оправились математический и физический мир: он доказал, что десятая проблема Гильберта не имеет решения. Во-первых, Гёдель доказал, что любой набор правил вывода, пригодный для корректного обоснования даже доказательств обычной арифметики, никогда не позволит обосновать доказательство своей собственной непротиворечивости. А значит, нечего и надеяться найти доказуемо непротиворечивый набор правил, о котором мечтал Гильберт. Во-вторых, Гёдель доказал, что если какой-то набор правил вывода в некоторой (достаточно обширной) области математики является непротиворечивым (неважно, доказуемо это или нет), то в пределах этой области должны существовать корректные методы доказательства, корректность которых нельзя установить, опираясь на данные правила. Это называется теоремой Гёделя о неполноте. Для доказательства своих теорем Гёдель пользовался замечательным расширением «диагонального аргумента» Кантора, о котором я упоминал в главе 6. Он начал с рассмотрения произвольного непротиворечивого набора правил вывода. Затем он показал, как составить утверждение, которое невозможно ни доказать, ни опровергнуть с помощью этих правил. Затем он доказал, что это высказывание является истинным.

Если бы программа Гильберта сработала, это стало бы плохой новостью для той концепции реальности, которую я выдвигаю в этой книге, поскольку устранило бы необходимость понимания при суждении о математических идеях. Кто угодно – или любой неразумный компьютер, – выучив правила вывода, на которые так надеялся Гильберт, смог бы судить о математических утверждениях, как и самый способный математик, не нуждаясь в математическом озарении или понимании и даже не имея самого отдаленного представления о смысле этих утверждений. Стало бы принципиально возможно делать новые математические открытия, не зная математики вообще, а зная только правила Гильберта. Можно было бы просто проверять все возможные строки букв и математических символов в алфавитном порядке, пока одна из них не прошла бы тест на то, является ли она доказательством или опровержением какого-либо знаменитого недоказанного предположения. В принципе, так можно было бы уладить любой спор в математике, даже не понимая его смысла – даже не зная значения символов, не говоря уж о понимании принципа действия доказательства или того, что оно доказывает, или в чем заключается метод доказательства, или почему на него можно положиться.

Может показаться, что достижение единого стандарта доказательств в математике могло бы, по крайней мере, помочь нам во всеобщем стремлении к объединению – то есть к «углублению» нашего знания, о котором я говорил в главе 1. Однако в действительности все наоборот. Подобно предсказательной «теории всего» в физике, правила Гильберта почти ничего не сказали бы нам о структуре реальности. Они реализовали бы в рамках математики заветную мечту редукционистов – предсказывать все (в принципе), но ничего не объяснять. Более того, если бы математика стала редукционистской, то все нежелательные черты, которые, как я показал в главе 1, отсутствуют в структуре человеческого знания, присутствовали бы в математике: математические идеи образовывали бы иерархию, в основе которой лежали бы правила Гильберта. Математические истины, проверка которых, исходя из этих правил, была бы очень сложна, оказались бы объективно менее фундаментальными, чем те, которые можно было бы немедленно проверить с помощью этих правил. Поскольку мог существовать только конечный набор таких фундаментальных истин, со временем математике пришлось бы заниматься все менее фундаментальными задачами. Математика вполне могла исчерпать себя, будь верна эта зловещая гипотеза. В противном случае она неизбежно распадается на все более загадочные специализации по мере увеличения сложности «эмерджентных» вопросов, которые вынуждены решать математики, и по мере того, как связи между этими вопросами и основаниями предмета становятся все более отдаленными.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика