Читаем Структура реальности. Наука параллельных вселенных полностью

Тот факт, что репертуар универсального квантового компьютера содержит среды, воспроизведение которых является труднорешаемым в классическом смысле, говорит о том, что новые классы чисто математических вычислений тоже должны стать легкорешаемыми на этом компьютере, потому что законы физики, как сказал Галилей, выражаются на языке математики, а воспроизведение среды эквивалентно вычислению определённых математических функций. Действительно, в настоящее время обнаружено множество математических задач, которые можно было бы эффективно решить с помощью квантовых вычислений, тогда как для всех известных классических методов они являются труднорешаемыми. Наиболее впечатляющей из этих задач является задача разложения на множители больших чисел. В 1994 году Питер Шор, работавший в Bell Laboratories, открыл метод, известный как алгоритм Шора. (Пока американское издание этой книги готовилось к печати, были открыты другие впечатляющие квантовые алгоритмы, включая алгоритм Гровера для очень быстрого поиска в длинных списках.)

Алгоритм Шора чрезвычайно прост и довольствуется гораздо более скромной аппаратурой, чем та, которая понадобилась бы для универсального квантового компьютера. А потому вероятно, что квантовое устройство для разложения на множители будет построено задолго до того, как станет технологически осуществимым весь спектр квантовых вычислений. Эта перспектива имеет грандиозное значение для криптографии (науки о секретной передаче информации и установлении её подлинности). Реальные сети связи могут быть глобальными и иметь огромные, постоянно изменяющиеся наборы участников с непредсказуемыми схемами связи. Непрактично требовать, чтобы каждая пара участников заранее физически обменивалась секретными шифровальными ключами, которые позволили бы им позднее общаться, не боясь, что их подслушают. Криптография с открытым ключом — это любой метод отправки секретной информации, при котором ни отправитель, ни получатель не обменивались до этого никакой секретной информацией. Самый надёжный из известных методов криптографии с открытым ключом основан на труднорешаемости задачи разложения на множители больших чисел. Этот метод известен как криптосистема RSA, которая получила своё название по первым буквам фамилий Рональда Ривеста, Ади Шамира и Леонарда Адельмана, впервые предложивших её в 1978 году. Она полагается на математическую процедуру, посредством которой можно закодировать сообщение, используя в качестве ключа огромное (скажем, 250-значное) число. Получатель может свободно обнародовать этот ключ для использования всеми отправителями, потому что любое сообщение, зашифрованное с его помощью, можно расшифровать, только зная сомножители этого числа. Таким образом, я могу выбрать два 125-значных простых числа и хранить их в секрете, но перемножить их и сообщить всем их 250-значное произведение. Кто угодно может послать мне сообщение, используя это число как ключ, но только я смогу прочитать эти сообщения, потому что только мне известны секретные множители.

Как я уже сказал, не существует практической возможности разложения на множители 250-значного числа с использованием классических средств. Но квантовое устройство разложения на множители, работающее по алгоритму Шора, могло бы это сделать, выполнив всего несколько тысяч арифметических операций, что, возможно, было бы минутным делом. Таким образом, любой человек, имеющий доступ к такой машине, смог бы легко прочитать любое перехваченное сообщение, зашифрованное с помощью криптосистемы RSA.

Криптографам не помогло бы использование более длинных чисел в качестве ключей, потому что ресурсы, необходимые для работы алгоритма Шора, очень медленно увеличиваются с ростом раскладываемого на множители числа. В квантовой теории вычислений разложение на множители — очень легкорешаемая задача. Считается, что при данном уровне декогеренции всё же снова появится некий практический предел размера числа, которое можно разложить на множители, но неизвестен нижний предел технологически достижимой скорости декогеренции. Поэтому мы должны сделать вывод, что однажды в будущем, во время, которое сейчас невозможно предсказать, криптосистема RSA с любой заданной длиной ключа может стать ненадёжной. В определённом смысле это делает её ненадёжной даже сегодня. Ведь люди или организации, которые сейчас перехватывают сообщения, закодированные в системе RSA, дождутся того времени, когда смогут купить квантовое устройство разложения на множители с достаточно низкой декогеренцией, и сумеют расшифровать эти сообщения. Возможно, это произойдёт только через века, возможно, всего через несколько десятилетий, а может, и ещё раньше — кто знает? Но вероятность того, что это случится ещё не скоро, — это всё, что теперь осталось от бывшей абсолютной надёжности системы RSA.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература