Читаем Структура реальности. Наука параллельных вселенных полностью

Прежде всего, Платон говорит нам, что, поскольку мы имеем доступ только (скажем) к несовершенным кругам, значит, через них мы не сможем получить знание о совершенных кругах. Но почему именно это невозможно? Точно так же можно было бы сказать, что мы не можем открыть законы движения планет, потому что у нас нет доступа к реальным планетам, а есть доступ только к их изображениям. (Инквизиция это и говорила, и я объяснил, почему она ошибалась.) Также можно было бы сказать, что невозможно построить точные станки, потому что первый такой станок пришлось бы строить с помощью неточных станков. Пользуясь преимуществами ретроспективного взгляда, можно заметить, что такая критика вызвана очень грубым — напоминающим индуктивизм — изображением устройства науки, что вряд ли можно считать удивительным, поскольку Платон жил задолго до появления того, что мы могли бы признать наукой. Если, скажем, единственный способ узнать что-либо о кругах из опыта заключается в том, чтобы исследовать тысячи физических кругов, а потом из собранных данных попытаться сделать какой-то вывод об их абстрактных евклидовых партнёрах, то Платон прав. Но если мы создадим гипотезу о том, что реальные круги в строго определённом смысле похожи на абстрактные, и окажемся правы, то мы вполне можем узнать нечто об абстрактных кругах, глядя на реальные. В геометрии Евклида часто используют рисунки для формулировки геометрической задачи или её решения. В таком методе описания существует возможность ошибки, если несовершенство кругов на рисунке оставит ложное впечатление — например, если кажется, что два круга касаются друг друга, хотя на самом деле этого не происходит. Но, поняв отношение между реальными и совершенными кругами, можно аккуратно исключить все подобные ошибки. А не понимая этого отношения, вообще практически невозможно понять геометрию Евклида.

Надёжность знания о совершенном круге, которое можно получить из изображения круга, полностью зависит от точности гипотезы о том, что эти круги сходны между собой в определённых аспектах. Такая гипотеза в отношении физического объекта (рисунка) эквивалентна физической теории, и она не может быть известна с полной уверенностью. Но этот факт не отменяет (как утверждал Платон) возможность изучения совершенных кругов на основе опыта; он лишь делает невозможной полную уверенность. Это не должно тревожить никого из тех, кто ищет не уверенности, а объяснения.

Геометрию Евклида можно абстрактно сформулировать вообще без рисунков. Но способ, которым цифры, буквы и математические символы используются в символьном доказательстве, даёт ничуть не большую уверенность, чем рисунок, и по той же самой причине. Символы — это тоже физические объекты (скажем, чернильные пятна на бумаге), которые обозначают абстрактные объекты. И опять мы полностью полагаемся на гипотезу о том, что физическое поведение символов соответствует поведению обозначаемых ими абстракций. Следовательно, надёжность того, что мы узнаём, манипулируя этими символами, полностью зависит от точности наших теорий об их физическом поведении и о поведении наших рук, глаз и т. д., с помощью которых мы манипулируем этими символами и наблюдаем за ними. Хитроумные чернила, из-за которых случайный символ изменил свой внешний вид, когда мы за ним не следили, — скажем, в результате высокотехнологического розыгрыша с применением дистанционного управления, — могут вскоре ввести нас в заблуждение относительно того, что мы знаем «уверенно».

Теперь давайте повторно исследуем ещё одно допущение Платона: допущение о том, что у нас нет доступа к совершенству в физическом мире. Возможно, он прав в том, что мы не найдём идеальной чести или справедливости, и он безусловно прав в том, что мы не найдём законы физики или множество всех натуральных чисел. Но мы можем найти совершенную руку в бридже или совершенный ход в данной шахматной позиции. Можно сказать и так: мы можем найти физические объекты или процессы, которые полностью воспроизводят свойства заданных абстракций. Мы можем научиться игре в шахматы как с помощью реальных шахмат, так и с помощью шахматного набора совершенной формы. Тот факт, что у коня сколото одно ухо, не делает мат, который он ставит, менее окончательным.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература