Читаем Структура реальности полностью

Насколько эффективно можно передать данные аспекты реальности? Другими словами, какие вычисления можно практически выполнить за данное время и при данных финансовых возможностях? Это основной вопрос теории вычислительной сложности, которая, как я уже сказал, занимается изучением ресурсов, необходимых для выполнения данных вычислительных задач. Теория сложности все еще в достаточной степени не объединена с физикой и потому не дает много количественных ответов. Однако она достигла успеха в определении полезного приближенного различия между легко- и труднообрабатываемыми вычислительными задачами. Общий подход лучше всего проиллюстрировать на примере. Рассмотрим задачу умножения двух достаточно больших чисел, скажем. 4 220 851 и 2 594 209. Многие из нас помнят тот метод умножения, которому мы научились в детстве. Нужно по очереди перемножить каждую цифру одного числа на каждую цифру другого и, сложив результаты, дать окончательный ответ, в данном случае 10 949 769 651 859. Вероятно, многие не захотят признать, что эта утомительная процедура делает умножение «легко обрабатываемым» хоть в каком-то обыденном смысле этого слова. (В действительности, существуют более эффективные методы умножения больших чисел, но этот весьма нагляден.) Однако с точки зрения теории сложности, которая имеет дело с массивными задачами, решаемыми компьютерами которые не подвержены скуке и почти никогда не ошибаются, этот метод определенно попадает в категорию «легко обрабатываемых».

В соответствии со стандартным определением для «легкости обработки» важно не действительное время, затрачиваемое на умножение конкретной пары чисел, а важен факт, что при применении того же самого метода даже к большим числам, время увеличивается не слишком резко. Возможно это удивит вас, но этот весьма косвенный метод определения легкости обработки очень хорошо работает на практике для многих (хотя и не всех) важных классов вычислительных задач. Например, при умножении нетрудно увидеть, что стандартный метод можно использовать для умножения чисел, скажем, в десять раз больших, Приложив совсем незначительные дополнительные усилия. Ради доказательства предположим, что каждое элементарное умножение одной цифры на другую занимает у определенного компьютера одну микросекунду (включая время, необходимое для сложения, переходов и других операций, сопровождающих каждое элементарное умножение). При умножении семизначных чисел 4 220 851 и 2 594 209 каждую из семи цифр первого числа нужно умножить на каждую из семи цифр второго числа. Таким образом, общее время, необходимое для умножения (если операции выполняются последовательно), будет равно семи, умноженному на семь, или 49 микросекундам. При введении чисел, примерно в десять раз больших, содержащих по восемь цифр, время, необходимое для их умножения, будет равно 64 микросекундам: увеличение составляет всего 31 %.

Ясно, что числа из огромного диапазона — безусловно содержащего любые числа, которые когда-либо были измерены как численные значения физических переменных — можно перемножить за крошечную долю секунды. Таким образом, умножение действительно легко поддается обработке для любых целей в пределах физики (или, по крайней мере, в пределах существующей физики). Вероятно, за пределами физики могут появиться практические причины умножения гораздо больших чисел. Например, для шифровальщиков огромный интерес представляют произведения простых чисел, состоящих примерно из 125 цифр. Наша гипотетическая машина могла бы умножить два таких простых числа, получив произведение, состоящее из 250 цифр, примерно за одну сотую секунды. За одну секунду она могла бы перемножить два тысячезначных числа, а современные компьютеры легко могут осуществить более точный расчет этого времени. Только некоторые исследователи эзотерических областей чистой математики заинтересованы в выполнении таких непостижимо огромных умножений, однако, мы видим, что даже у них нет причины считать умножение трудно обрабатываемым.

Напротив, разложение на множители, по сути процесс, обратный умножению, кажется гораздо сложнее. В начале вводится одно число, скажем, 10 949 769 651 859, задача заключается в том, чтобы найти два множителя, меньших числа, произведение которых равно 10 949 769 651 859. Поскольку мы только что умножили эти числа, мы знаем, что в этом случае ответ будет 4 220 851 и 2 594 209 (и поскольку оба эти числа простые, это единственно правильный ответ). Но не обладая таким внутренним знанием, как мы нашли бы эти множители? В поисках простого метода вы обратитесь к детским воспоминаниям, но впустую, поскольку такого метода не существует.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука