Читаем Структура реальности полностью

Аристотель заявил, что все обоснованные доказательства можно выразить в виде силлогизмов. Но он не доказал это! А проблема теории Доказательства заключалась в том, что очень небольшое количество современных математических доказательств выражались в виде чистой последовательности силлогизмов; более того, большинство из них невозможно было привести к такому виду. Тем не менее, большинство Математиков не могли заставить себя следовать букве закона Аристотеля, так как некоторые новые доказательства казались так же самоочевидно обоснованными, как и рассуждение Аристотеля. Математики перешли на новый этап развития. Новые инструменты, такие, как символическая логика и теория множеств, позволили математикам установить новую связь между математическими структурами. Благодаря этому появились новые самоочевидные истины, независимые от классических правил вывода, и, таким образом, классические правила оказались самоочевидно неадекватными. Но какие же из новых методов доказательства были действительно безошибочными? Как нужно было изменить правила вывода, чтобы они обрели законченность, на которую ошибочно претендовал Аристотель? Как можно было вернуть абсолютный авторитет старых правил, если математики не могли прийти к соглашению относительно того, что является самоочевидным, а что бессмысленным?

Тем временем математики продолжали строить свои абстрактные небесные замки. Для практических целей многие такие строения казались достаточно надежными. Некоторые из них стали необходимы для науки и техники, а большинство образовало красивую и плодотворную структуру. Тем не менее, никто не мог гарантировать, что вся эта структура, или какая-то существенная ее часть, не имела в своей основе логического противоречия, которое буквально лишило бы ее всякого смысла. В 1902 году Бертран Рассел доказал несостоятельность схемы строгого определения теории множеств, которую только что предложил немецкий логик Готлоб Фреге. Это не значило, что эта схема непременно была необоснованной для использования множеств в доказательствах. На самом деле совсем немногие математики всерьез считали, что хоть какой-то из обычных способов использования множеств, арифметики или других ключевых разделов математики может быть необоснованным. В результатах Рассела поражало то, что математики верили, что их предмет является par excellence средством получения абсолютной определенности через доказательство математических теорем. Сама возможность разногласий относительно обоснованности различных методов доказательства подрывала всю суть (как считалось) предмета.

Поэтому многие математики чувствовали, что подведение под теорию доказательства, а тем самым и под саму математику, надежной основы было насущным делом, не терпящим отлагательства. Они хотели объединиться после своих опрометчивых выпадов, чтобы раз и навсегда определить, какие виды доказательства являются абсолютно надежными, а какие нет. Все, что оказалось вне зоны надежности, можно было бы отбросить, а все, что попадало в эту зону, стало бы единственной основой всей будущей математики.

В этой связи голландский математик Лейтзен Эгберт Ян Брауэр пропагандировал чрезвычайно консервативную стратегию теории доказательства, известную как интуиционизм, которая и по сей день имеет своих сторонников. Интуиционисты пытаются толковать «интуицию» самым ограниченным постижимым образом, оставляя лишь то, что они считают ее неоспоримыми самоочевидными аспектами. Затем они поднимают таким образом определенную математическую интуицию на уровень даже более высокий, чем позволял себе Платон: они считают ее более веской, чем даже чистая логика. Таким образом, они считают саму логику ненадежной, за исключением тех случаев, когда ее доказывает прямая математическая интуиция. Например, интуиционисты отрицают, что можно иметь прямую интуицию какой-либо бесконечной категории. Следовательно, они отрицают существование любых бесконечных множеств, например, множества всех натуральных чисел. Высказывание о том, что «существует бесконечно много натуральных чисел», они сочли бы самоочевидно ложным. А высказывание о том, что «существует больше сред Кантгоуту, чем физически возможных сред», — абсолютно бессмысленным.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука