В устройстве, уменьшающем сопротивление подводного аппарата, используется слабый раствор полимера (В3 на микроуровне), образующийся в пограничном слое забортной воды при смешении подогретой жидкой смеси либо гранулированного или порошкообразного полимера с морской водой. Подогретая жидкая смесь представляет собой дисперсию макромолекул полимера, растворимую в морской воде при температуре окружающей среды, но нерастворимую в воде при температуре выше 70о С. Когда подогретая жидкая смесь попадает в холодную воду при соответствующих условиях окружающей среды, частицы набухают и растворяются, образуя клейкую массу. В пограничном слое обтекающего потока они образуют молекулярный раствор макромолекул, препятствуя образованию турбулентного потока (рис. 4.6). В этом изобретении использован эффект Томса.
В вепольной схеме по схеме (4.1) в данном изобретении:
В1 — морская вода;
В2 — подводный аппарат;
П1 — поток воды;
В3 — клейкая смесь.
Рис. 4.6. Подводный аппарат с клейкой массой.
Патент США 3 435 796
1 — подводный аппарат, 2 — формирующая насадка (головка), 3 — радиальный канал, 4 — входное отверстие, 5 — насос, 6 — клапан, 7 — нагреватель, 8 — смесительный бак, 9 — добавка, 10 — поток воды, 11 — клейкая масса — дисперсия полимера (пунктирная линия).
Пример 4.12. Трубопровод
Для снижения потерь напора при перемещении жидкости по трубопроводу и достижения жидкостью свойства псевдопластичности в нее вводят длинноцепочный полимер, например полиакриламид, в количестве 0,01‒0,2% по весу (рис. 4.7). В этом изобретении (а. с. 244 032) использован эффект Томса.
В вепольной схеме по схеме (4.1) в данном изобретении:
В1 — жидкость;
В2 — трубопровод;
П1 — поток жидкости;
В3 — длинноцепочный полимер.
Рис. 4.7. Трубопровод
Пример 2.13. Снижение гидродинамического сопротивления
Снижение гидродинамического сопротивления может быть достигнуто за счет образования присадок под воздействием какого-либо поля из молекул самой жидкости, аналогичных по свойствам полимерным молекулам. В данном примере В3 — присадки.
4.3. Устранение вредных связей введением В3=В1, В2 или их видоизменений
Устранение вредных связей в системе производится введением между веществами В1 и В2 третьего вещества В3, являющегося веществом В1 или В2, или их видоизменением (они обозначаются В'1, В'2).
В отличие от схемы (4.1) в данном случае В3 вводится и не водится. Используются ресурсы системы — берутся имеющиеся в системе вещества В1 или В2 или их видоизменения В1», В2». Это описано схемой (4.4).
Это более идеальная схема, так как мы не вводим дополнительных веществ, а используем только имеющиеся.
Продолжим рассмотрение задачи 4.9 (подводные крылья).
Согласно схеме (4.4), в качестве В3 может быть использованы
Сначала продемонстрируем примеры устранения вредных связей использованием самих веществ (крыла и воды).
Пример 4.14. Дополнительное крыло
Для недопущения вредного действия кавитации можно использовать в качестве В3 дополнительное крыло (рис. 4.8). Это крыло создает поток, который уносит квитанционные пузыри за крыло. Таким образом, крыло не разрушается.
Рис. 4.8. Подводное крыло с дополнительным крылом
Пример 4.15. Поток воды над крылом
Для недопущения кавитации можно использовать в качестве В3
Дополнительный поток жидкости над крылом можно создать, сделав в крыле тонкие сквозные отверстия (рис. 4.9). Тогда за счет разницы давлений (Р1 и Р2) вода с нижней части крыла будет «подсасываться» на верхнюю поверхность крыла. Напомним, что разница в давление над крылом и под крылом создается за счет формы крыла. Длина периметра верхней части больше нижней, поэтому сверху скорость прохождения потока больше, чем внизу, а следовательно, в соответствии с законом Бернулли давление будет меньше, там, где скорость потока выше.
Рис. 4.9. Подводное крыло с дополнительным потоком воды
Где: Р1 — давление над крылом; Р2 — давление под крылом.
Подобная подача воды в зону засасывания крыла повышает в ней давление и отдаляет возникновение кавитации при данной скорости обтекания крыла.
Чтобы подача жидкости в верхнюю часть крыла меньше сказывалась на снижении подъемной силы крыла, осуществляют отсос воды из среднего продольного канала за счет набегающего потока (рис. 4.9). Отсос создается за счет разряжения, получаемого путем потока жидкости, проходящего перпендикулярно вертикальным каналам, используя явление эжекции.
Скорость протекания воды в среднем продольном канале будет меньше, чем в верхней части крыла, а давление, соответственно, больше. При этом давление нагнетания на нижней поверхности крыла, в отличие от варианта на рис. 4.10, будет сохранено.
Рис. 4.10. Подводное крыло с дополнительным потоком воды