Читаем Судьба цивилизации. Путь Разума полностью

Некоторые пояснения мы можем дать с помощью следующей простой математической модели. Обозначим через х(t) некоторое количество однотипных элементов в момент времени t . Представим себе, что воспроизведение себе подобных происходит в дискретные моменты времениt, t + d, t + 2d, t + 3d , …Тогда динамику этого процесса мы можем описать с помощью следующего балансового соотношения:x (t + nd ) = f (xnote 8, t + {n - 1)d ) - kx (t + {n -1]d . (1)Выписанное соотношение является частным случаем так называемого демографического уравнения, поскольку первое слагаемое правой части описывает интенсивность появления нового количества х (т.е. рождаемость), причем функция f - неотрицательная функция своих аргументов, если они отличны от нуля, иf (0,t +nd ) = 0,ибо нулевое количество элементов ничего произвести не может. Второе слагаемое в уравнении (1) описывает смертность - интенсивность убытия элементов, которая принимается обычно пропорциональной их количеству. Поэтому, если в некоторый момент времени величина х , вычисленная в силу уравнения (1), окажется отрицательной, то ее следует положить равной нулю. И на этом прекратить вычисления, поскольку совокупность элементов note 9 перестает существовать!Таким образом, после работ Эйгена стало очевидным, что метаболизм и редупликация вовсе не являются прерогативой только одного живого вещества и этих свойств недостаточно для того, чтобы идентифицировать живое вещество - выделить его из мира остального вещества. Многие, в том числе и я, полагали, что таким исключительным свойством живого остается его стремление сохранить свою целостность.Однако в 1991 году я предложил модель системы элементов, необязательно живых, способных формировать петли отрицательной обратной связи, сохранявшей целостность системы. (См. мою статью: Биота как регулятор и проблема sustainability // ЖВМ и МФ, 1994. Т. 34, N 4). В ее основе лежит постулат о том, что в любом реальном процессе неизбежно присутствуют те или иные случайные факторы. Из него, в частности, следует, что любое множество не может состоять из вполне тождественных элементов. Будем обозначать через X = note 10 множество элементов х , обладающих свойством s . Кроме того, условимся, что с некоторой вероятностью элемент, обладающий свойством s , может порождать и другие элементы. Это позволяет нам переписать (в рамках гипотезы о средних) уравнение (1) в следующей форме.xs (t +nd ) = f (x1 [t +note 11d ,x 2[t +note 12d ,…,t +[n -1}d ) - kxs (t +{n -1}d ). (2)К этому уравнению необходимо добавить еще условие неотрицательности величины xs , о котором мы говорили выше.Уравнение (2) - простейшая интерпретация процесса неточной редупликации. Несмотря на свою простоту, оно описывает ряд замечательных свойств, присущих множествуX = note 13.Прежде всего, оно показывает, что за счет стохастики (неточности воспроизведения) множество элементов Х может превратиться в систему взаимосвязанных элементов, состояние каждого из которых влияет на судьбу остальных. Но это еще, вероятно, не главное. Уравнение (2) показывает, что у множества Х возникают чисто системные свойства, которые не следуют из свойств отдельных элементов. А именно: в системе возникает тенденция сохранения целостности системы. В самом деле, предположим, что в некоторый момент t +nd один из элементов, например xs (t +nd ), в силу уравнения (2) оказался равным нулю, т.е. его смертность превзошла рождаемость. Но в следующий момент времени t +(n +1) уравнение (2), выписанное для этого элемента, будет иметь вид:xs (t +note 14d ) = f (x 1note 15, x 2note 16,…,t +nd ) › 0. (3)Другими словами, за счет неточности редупликации элемент xs , выбывший из системы на предыдущем шаге, снова в ней восстановится. Значит, в системе Х возникла обратная связь, сохраняющая целостность системы - стремление обеспечить существование элементов, сохраняющих свойство s . И возникновение такой обратной связи - специфическое свойство системы, появляющееся в результате действия алгоритмов сборки! И оно невыводимо из свойств элементов xs .Изложенный пример в некоем смысле замыкает картину: ни метаболизм, ни редупликация, ни даже возникновение обратных связей, обеспечивающих стабильность системы, не являются прерогативой только живого вещества. Они всего лишь свойства, необходимые для его функционирования. Но они недостаточны для его идентификации, для определения ЖИЗНИ как феномена, рожденного Универсумом в процессе его эволюции.Из сказанного можно сделать вывод о том, что в настоящее время определение понятия “живое вещество” (включая знаменитое высказывание Энгельса о том, что жизнь есть форма существования белковых тел), удовлетворяющее требованиям рационализма, отсутствует.Тем не менее мы чувствуем и знаем то качественное отличие вещества живого от косного, утверждение которого на поверхности планеты качественно изменило характер ее развития. На ее поверхности возникла сверхтонкая пленка живого вещества, которая, взаимодействуя с энергией космоса, повернула все процессы эволюции в новый канал развития. И это дает мне основание считать возникновение биосферы первой фундаментальной бифуркацией в истории эволюции Земли как небесного тела.
Перейти на страницу:

Похожие книги

Актуальность прекрасного
Актуальность прекрасного

В сборнике представлены работы крупнейшего из философов XX века — Ганса Георга Гадамера (род. в 1900 г.). Гадамер — глава одного из ведущих направлений современного философствования — герменевтики. Его труды неоднократно переиздавались и переведены на многие европейские языки. Гадамер является также всемирно признанным авторитетом в области классической филологии и эстетики. Сборник отражает как общефилософскую, так и конкретно-научную стороны творчества Гадамера, включая его статьи о живописи, театре и литературе. Практически все работы, охватывающие период с 1943 по 1977 год, публикуются на русском языке впервые. Книга открывается Вступительным словом автора, написанным специально для данного издания.Рассчитана на философов, искусствоведов, а также на всех читателей, интересующихся проблемами теории и истории культуры.

Ганс Георг Гадамер

Философия
История политических учений. Первая часть. Древний мир и Средние века
История политических учений. Первая часть. Древний мир и Средние века

  Бори́с Никола́евич Чиче́рин (26 мая(7 июня) 1828, село Караул, Кирсановский уезд Тамбовская губерния — 3 (17) февраля1904) — русский правовед, философ, историк и публицист. Почётный член Петербургской Академии наук (1893). Гегельянец. Дядя будущего наркома иностранных дел РСФСР и СССР Г. В. Чичерина.   Книга представляет собой первое с начала ХХ века переиздание классического труда Б. Н. Чичерина, посвященного детальному анализу развития политической мысли в Европе от античности до середины XIX века. Обладая уникальными знаниями в области истории философии и истории общественнополитических идей, Чичерин дает детальную картину интеллектуального развития европейской цивилизации. Его изложение охватывает не только собственно политические учения, но и весь спектр связанных с ними философских и общественных концепций. Книга не утратила свое значение и в наши дни; она является прекрасным пособием для изучающих историю общественнополитической мысли Западной Европы, а также для развития современных представлений об обществе..  Первый том настоящего издания охватывает развитие политической мысли от античности до XVII века. Особенно большое внимание уделяется анализу философских и политических воззрений Платона и Аристотеля; разъясняется содержание споров средневековых теоретиков о происхождении и сущности государственной власти, а также об отношениях между светской властью монархов и духовной властью церкви; подробно рассматривается процесс формирования чисто светских представлений о природе государства в эпоху Возрождения и в XVII веке.

Борис Николаевич Чичерин

История / Политика / Философия / Образование и наука