2) низковольтная рентгеноскопия - просвечивание объектов рентгеновскими лучами с помощью маломощных и низковольтных портативных рентгеновских аппаратов или рентгеновских установок для рентгенофазового анализа. Изображение регистрируется на рентгеновской пленке контактным (например, бумажных денег или документов) или дистанционным (например, ювелирных камней, наслоений частиц стекла, металлов, лакокрасочных покрытий на ткани, деталях одежды) способом. Так, при изготовлении подлинных денежных билетов в России используются красители органической природы, в состав которых входят только легкие элементы. Поэтому эти купюры полностью прозрачны для рентгеновского излучения и при просвечивании не образуют тени на пленке или экране. Напротив, поддельные денежные билеты изготовляются с использованием обычных красок, содержащих тяжелые металлы (свинец, железо, медь и проч.). Поэтому при их просвечивании на экране видно четкое изображение купюры;
3) рентгеновская микроскопия позволяет за счет широкого диапазона энергий (от десятков эВ до десятков кэВ) изучать структуру самых различных объектов, от живых клеток до тяжелых металлов. Рентгеновские микроскопы по конструкциям делятся на проекционные, контактные, отражательные и дифракционные. К сожалению, для исследования вещественных доказательств метод пока применяется мало.
Методы анализа состава делятся на методы элементного анализа, методы молекулярного анализа и методы анализа фазового состава.
1. Методы элементного анализа используются для установления элементного состава, т.е. качественного или количественного содержания определенных химических элементов в данном объекте экспертного исследования. Круг их достаточно широк, однако наиболее распространены в экспертной практике перечисленные ниже:
1) эмиссионный спектральный анализ, заключающийся в том, что с помощью источника ионизации вещество пробы переводится в парообразное состояние и возбуждается спектр излучения этих паров. Проходя далее через входную щель специального прибора - спектрографа, излучение с помощью призмы или дифракционной решетки разлагается на отдельные спектральные линии, которые затем регистрируются на фотопластинке или с помощью детектора. Качественный эмиссионный спектральный анализ основан на установлении наличия или отсутствия в полученном спектре аналитических линий искомых элементов, количественный - на измерении интенсивностей спектральных линий, которые пропорциональны концентрациям элементов в пробе. Используется для исследования широкого круга вещественных доказательств - взрывчатых веществ, металлов и сплавов, нефтепродуктов и горюче-смазочных материалов, лаков и красок и др.;
2) лазерный микроспектральный анализ, основан на поглощении
сфокусированного лазерного излучения, благодаря высокой
интенсивности которого начинается испарение вещества мишени и
образуется облако паров - факел, служащий объектом
исследования. За счет повышения температуры и других процессов
происходит возбуждение и ионизация атомов факела с образованием
плазмы, которая является источником анализируемого света.
Фокусируя лазерное излучение, можно производить спектральный
анализ микроколичеств вещества, локализованных в малых объемах
-10
(до 10 куб. см), и устанавливать качественный и количественный
элементный состав самых разнообразных объектов практически без их
разрушения;
3) рентгеноспектральный анализ. Прохождение рентгеновского излучения через вещество сопровождается поглощением излучения, что приводит атомы вещества в возбужденное состояние. Возврат к исходному состоянию сопровождается излучением спектра характеристического рентгеновского излучения. По наличию спектральных линий различных элементов можно определить качественный, а по их интенсивности - количественный элементный состав вещества. Это один из наиболее удобных методов элементного анализа вещественных доказательств, который на качественном и часто полуколичественном уровне является практически неразрушающим, только в редких случаях при исследовании ряда объектов, как правило, органической природы могут произойти видоизменения отдельных свойств этих объектов. Используется для исследования широкого круга объектов: металлов и сплавов, частиц почвы, лакокрасочных покрытий, материалов документов, следов выстрела и проч.
2. Под молекулярным составом объекта понимают качественное (количественное) содержание в нем простых и сложных химических веществ, для установления которого используются методы молекулярного анализа:
1) химико-аналитические методы, которые традиционно применяются в криминалистике уже десятки лет, например капельный анализ, основанный на проведении таких химических реакций, существенной особенностью которых является манипулирование с капельными количествами растворов анализируемого вещества и реагента. Используют для проведения в основном предварительных исследований ядовитых, наркотических и сильнодействующих, взрывчатых и т.п. веществ. Для осуществления этого метода созданы наборы для работы с определенными видами следов: "Капля", "Капилляр" и др.;
Александр Юрьевич Ильин , А. Ю. Ильин , В. А. Яговкина , Денис Александрович Шевчук , И. Г. Ленева , Маргарита Николаевна Кобзарь-Фролова , М. Н. Кобзарь-Фролова , Н. В. Матыцина , Станислав Федорович Мазурин
Экономика / Юриспруденция / Учебники и пособия для среднего и специального образования / Образование и наука / Финансы и бизнес