Выше мы обсуждали генетически обусловленную устойчивость к малярийному плазмодию и токсоплазме. Еще лучше изучена устойчивость людей к ВИЧ в результате мутации гена рецептора хемокинов CCR5. Хемокины – это сигнальные молекулы, которые выделяют одни клетки, чтобы привлечь к себе другие (у которых есть рецепторы хемокинов). Например, если где-то начинается инфекция, с помощью хемокинов привлекаются клетки иммунной системы. CCR5 – это белок, расположенный на поверхности иммунных клеток, необходимый для распознавания некоторых таких химических сигналов.
Как известно, ВИЧ инфицирует иммунные клетки человека. Перед проникновением в иммунную клетку он должен ее опознать, связавшись с определенными белками на ее поверхности, а CCR5 – как раз один из таких белков. Если в гене CCR5 присутствует относительно распространенная мутация, которая называется CCR5-дельта-32 (32 нуклеотида вырезаны из гена), то ВИЧ не может связаться с рецептором, и ему сложно проникнуть в клетку. Иммунные клетки с такой мутацией функционируют хуже, но защищены от ВИЧ, особенно если у человека испорчены обе копии гена372, 373
.В 2009 году в журнале New England Journal of Medicine
вышла статья о том, что удалось вылечить пациента, болевшего сразу двумя смертельными заболеваниями – ВИЧ и лейкемией374. Для лечения лейкемии можно использовать химиотерапию, при которой избирательно погибают активно делящиеся клетки. Прежде всего речь идет о раковых клетках, но, к сожалению, вместе с ними погибают многие стволовые клетки костного мозга, дающие начало клеткам крови. Поэтому после агрессивной химиотерапии пациенту делают пересадку костного мозга от донора. В данном случае донором костного мозга специально выбрали носителя той самой мутации CCR5-дельта-32 на обеих хромосомах. Несколько лет спустя после многочисленных тестов было объявлено, что пациент вылечился и от лейкемии, и от ВИЧ: его новые иммунные клетки оказались устойчивы к вирусу375. К сожалению, такая терапия с пересадкой костного мозга очень опасна для здоровья (риск смертельного исхода исчисляется десятками процентов), поэтому едва ли она может стать распространенным медицинским подходом. Но на основе описанной устойчивости разработаны как лекарственные препараты, мешающие ВИЧ связаться с CCR5, так и генная терапия ВИЧ, которая сейчас проходит клинические испытания.Суть генной терапии ВИЧ проста – у человека берутся его собственные иммунные клетки. В них с помощью генной инженерии вносятся мутации в гене CCR5, нарушающие его функцию, после чего клетки возвращаются пациенту. Немного рано говорить об эффективности данной терапии, но исследователи отмечают, что она приводит к значительному снижению числа частиц ВИЧ у большинства пациентов376
. Кстати, один из способов направленного внесения мутаций в ген CCR5 иммунных клеток – доставка с помощью аденовирусов белка Cas9 и направляющей РНК. Этот метод генной инженерии мы подробно обсуждали в предыдущей главе.Другой генно-инженерный подход к борьбе с ВИЧ тоже основан на использовании белка Casy.
Идея заключается в том, чтобы создать у клеток человека настоящий бактериальный иммунитет. С ВИЧ сложно бороться, так как он, будучи ретровирусом, встраивает свой геном в хромосомы человеческих клеток. В 2013 году группа японских ученых показала, что с помощью CRISPR/Casy-системы можно вырезать ВИЧ, встроенный в геном клеток человека377. Опыты проводились не на пациентах, а на отдельных клетках, но скоро могут начаться клинические испытания и на людях, и, вполне вероятно, лекарство от ВИЧ наконец будет найдено. Отдельно стоит отметить, что недавно ученые научились использовать Casy, чтобы разрезать не только ДНК, но и РНК378. Это открывает новые (и более безопасные) терапевтические возможности для направленной борьбы с вирусами.Врожденная мышечная дистрофия – еще одно наследственное заболевание, которое пытаются лечить с помощью генной терапии379
. К сожалению, в данном случае эффективного лекарства пока не найдено. Тем не менее ученым удалось создать генетически модифицированных мышей, обладающих существенно увеличенной мышечной массой и физической выносливостью, почти как герой мультфильма “Супермышь” (Mighty Mouse) 380. Можно ожидать, что в будущем мы сможем не только научиться лечить мышечную дистрофию, но и делать людей сильнее и выносливее.