302. Chalfie M. et al.: Green fluorescent protein as a marker for gene expression. Science 1994, 263(5148):802–5.
303. Heim R. et al.: Improved green fluorescence. Nature 1995, 373(6516):663–4.
304. Matz M.V. et al.: Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999, 17(10):969–73.
305. Terskikh A. et al.: “Fluorescent timer”: protein that changes color with time. Science 2000, 290(5496):1585–8.
306. Livet J. et al.: Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007, 450(7166):56–62.
307. Klein R.M. et al.: High-velocity microprojectiles for delivering nucleic acids into living cells. 1987. Biotechnology 1992, 24:384–6.
308. Daniell H. et al.: Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc Natl Acad Sci USA 1990, 87(1):88–92.
309. Zambryski P. et al.: Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 1983, 2(12):2143–50.
310. Mojica F.J. et al.: Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 2000, 36(1):244–6.
311. Pourcel C. et al.: CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005, 151(Pt 3):653–63.
312. Mojica F.J. et al.: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005, 60(2):174–82.
313. Bolotin A. et al.: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005, 151(Pt 8):2551–61.
314. Makarova K.S. et al.: A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 2006, 1:7.
315. Barrangou R. et al.: CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315(5819):1709–12.
316. Jinek M. et al.: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337(6096):816–21.
317. Jinek M. et al.: RNA-programmed genome editing in human cells. Elife 2013, 2:e00471.
318. Wang H. et al.: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153(4):910–8.
319. Gantz V.M., Bier E.: Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 2015, 348(6233):442–4.
320. Liang P. et al.: CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015, 6(5):363–72.
321. Ran F.A. et al.: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154(6):1380–9.
322. Tsai S.Q. et al.: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014, 32(6):569–76.
323. Guilinger J.P. et al.: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 2014, 32(6):577–82.
324. Davis K.M. et al.: Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 2015, 11(5):316–8.
325. Maruyama T. et al.: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015, 33(5):538–42.
326. Chu V.T. et al.: Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 2015, 33(5):543–8.
327. Hemphill J. et al.: Optical Control of CRISPR/Cas9 Gene Editing. J Am Chem Soc 2015, 137(17):5642–5.
328. Nihongaki Y. et al.: Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 2015.
329. Chapman K.M. et al.: Targeted Germline Modifications in Rats Using CRISPR/Cas9 and Spermatogonial Stem Cells. Cell Rep 2015, 10(11):1828–35.
330. Gibson D.G. et al.: Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010, 329(5987):52–6.
331. Howard T.P. et al.: Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci USA 2013, 110(19):7636–41.
332. Sarria S. et al.: Microbial synthesis of pinene. ACS Synth Biol 2014, 3(7):466–75.
333. Kolisnychenko V. et al.: Engineering a reduced Escherichia coli genome. Genome Res 2002, 12(4):640–7.
334. Posfai G. et al.: Emergent properties of reduced-genome Escherichia coli. Science 2006, 312(5776):1044–6.
335. Malyshev D.A. et al.: A semi-synthetic organism with an expanded genetic alphabet. Nature 2014, 509(7500):385–8.
336. Kim T. et al.: A Synthetic Erectile Optogenetic Stimulator Enabling Blue-Light-Inducible Penile Erection. Angew Chem Int Ed Engl 2015.