Читаем Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей полностью

Подтверждение роли CRISPR-системы в бактериальном иммунитете было опубликовано в 2007 году в журнале Science и принадлежит группе ученых из компании Damsco315. Исследователи хотели улучшить йогурт, защитив молочнокислые бактерии от бактериофагов, но волей случая внесли вклад в открытие одного из самых важных методов редактирования ДНК живых организмов.

В 2012 году в журнале Science вышла статья ученых из Медицинского института Говарда Хьюза, в которой было показано, что один из белков бактериальной CRISPR-системы (белок Casp) умеет разрезать молекулы ДНК в строго определенных местах316. Для этого достаточно предоставить ему специально подобранные направляющие РНК. Год спустя все та же группа исследователей опубликовала статью под названием “РНК-программируемое редактирование генома клеток человека"317. Оказалось, что белок Casp может работать и в клетках человека, если вместе с геном белка Casp внедрить в них ген, кодирующий направляющую РНК к какой-нибудь последовательности человеческой ДНК. Параллельно другая группа исследователей генетически модифицировала мышей с помощью Casp318. Но самое интересное было дальше.

Рассмотрим организм, у которого на одной из хромосом возникла новая мутация. Каждому потомку организма передается только одна родительская хромосома из пары, поэтому, если скрестить организм с мутацией (на одной хромосоме) и организм без мутации, половина их потомков унаследует генетическое изменение, а половина не унаследует. Если скрестить полученных потомков, несущих мутацию, друг с другом, четверть особей следующего поколения будет иметь мутацию на обеих хромосомах, половина на одной, а четверть окажется вовсе без мутации. Несложно заметить, что это классическое наследование (по Менделю) не очень эффективно в передаче нового “мутантного" варианта потомкам.



В 2015 году в журнале Science вышла статья с описанием “мутагенной цепной реакции”. МЦР – это новый метод быстрого редактирования геномов живых организмов на основе белка Casy319. Он позволяет не только внести какую-то последовательность ДНК в определенное место генома, но и обойти вышеупомянутые законы наследования и добиться того, чтобы в результате скрещивания генетически модифицированного и обычного организма получались только генетически модифицированные потомки, причем с мутацией сразу на обеих копиях хромосомы. Как это сделать?

Мы выбираем место, которое хотим редактировать, и ген, который хотим вставить. Создаем плазмиду, содержащую целевой ген, ген белка Casy и ген специально подобранной направляющей РНК, распознающей желаемое место вставки. Все это обрамляется двумя последовательностями ДНК, комплементарными участкам хромосомы предшествующему и следующему за местом разреза разреза (будущим местом вставки). Плазмида с такой конструкцией переносится в клетку. Внутри клетки синтезируется белок Casy, который связывает направляющую РНК и делает двухцепочечный разрез в комплементарном ей участке одной из хромосом. Клетки не любят разрезы в ДНК (а точнее, “оголенные” концы этих молекул) и пытаются их исправить, снова сшить молекулы.

Иногда для исправления разреза подключается особый клеточный механизм починки ДНК, который в поисках информации о том, как выглядела молекула ДНК до разреза, может обратиться ко второй копии хромосомы. Используя эту информацию, механизм, названный гомологичной рекомбинацией, может проверить, не пропало ли что-нибудь в месте разреза, и восстановить недостающие нуклеотиды.

Если клетка использует для починки вторую копию хромосомы или просто сошьет концы вместе, ничего не изменится. Белок Casy снова сделает разрез, и клетке придется чинить ДНК заново.

С другой стороны, на копию хромосомы очень похожа наша плазмида, так как у нее есть обрамляющие участки, точно совпадающие с участками вокруг разреза! Из-за этих участков система починки ДНК может перепутать плазмиду со второй копией хромосомы и синтезировать копию нашей конструкции (с целевым геном, геном Casy и геном направляющей РНК) в место разреза. Когда вторая копия хромосомы будет разрезана все тем же белком Casy, “дырка” в ДНК исправится за счет копирования участка с первой (уже генетически модифицированной) копии хромосомы или участка с нашей плазмиды. В любом случае обе хромосомы окажутся с нужной нам вставкой.

Когда наша генетически модифицированная хромосома передастся потомку организма, в его клетках тоже будут синтезированы белок Casy и направляющая РНК. В результате вторая копия хромосомы, доставшаяся от другого родителя, тоже будет изменена. Получается, что генетически модифицированная хромосома превращает немодифицированные копии хромосомы в себе подобные, а вставка очень эффективно распространяется в популяции. Если организм с такой вставкой выпустить в окружающую среду, шансы, что вставка распространится, будут очень высоки. А значит, такой подход теоретически можно использовать для инженерии природных популяций – например, для борьбы с разносчиками инфекций.

Перейти на страницу:

Похожие книги

Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука