Как возник наш зеленый зрительный пигмент? У наших сравнительно недавних предков произошло удвоение (дупликация) гена красного зрительного пигмента. Вместо одного гена появилось два. Когда происходит такое мутационное событие, у естественного отбора возникает замечательная возможность «поэкспериментировать» — гены начинают меняться быстрее обычного. Если раньше мутация, меняющая спектр поглощения красного зрительного пигмента, могла привести к нарушению зрения, то теперь, пока есть запасная копия гена, вторая может свободно мутировать. Если в ходе этого процесса организм научится различать больше цветов (и это будет полезно), мутации зафиксируются естественным отбором. Механизм эволюции путем дупликации генов достаточно распространен[363]. В случае с красным зрительным пигментом было экспериментально показано, что достаточно заменить в нем всего три аминокислоты, чтобы сделать его зеленым[364].
Нередко шутят, что мужчина различает мало цветов — красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый, а женщины — куда больше: алый, кармин, гвоздика, пурпурный, тыквенный, персиковый, банановый, лимонный и так далее. Не исключено, что в такой шутке есть доля правды, имеющей молекулярно-генетические основания. Как мы уже установили, некоторые мутации в зрительных пигментах не нарушают их работу, но слегка меняют спектр их светочувствительности. Например, в европейской популяции есть два распространенных варианта красного зрительного пигмента. Примерно 60% вариантов генов красного пигмента имеют аминокислоту серин на 180-й позиции белка, а 40% — аланин, причем аланиновый вариант пигмента работает в чуть «более красном» (более длинноволновом) диапазоне[365]. У мужчины всегда будет либо один, либо другой вариант красного пигмента, а у женщины могут присутствовать оба. Есть основания полагать, что в редких случаях женщины с таким повышенным разнообразием зрительных пигментов могут различать больше оттенков[366].
В 2009 году в журнале
К сожалению, на данный момент клинические испытания по лечению дальтонизма не ведутся, а значит, еще рано говорить и о создании людей-тетрахроматов. Зато достигнут определенный прогресс в лечении ряда серьезных нарушений зрения, например амавроза Лебера. Это наследственное заболевание, при котором из-за дефектного гена погибают светочувствительные клетки сетчатки. Для того чтобы предотвратить прогрессирующую слепоту, пациентам вводят вирус, содержащий работающую копию гена, прямо в глаз, и это исправляет дефект[368]. Но что делать, если колбочки и палочки уже разрушены и восстановлению не подлежат?
Даже в этой ситуации остается надежда на частичное излечение.
У зеленых водорослей хламидомонад есть особый белок, называющийся каналородопсин. Обычные светочувствительные белки животных при активации светом запускают сложные каскады химических реакций. Каналородопсины действуют иначе — это особые каналы, расположенные в мембране клетки. На синем свету канал открывается и пропускает внутрь клетки ионы натрия. Эти ионы заряжены положительно и способны изменять потенциал клетки. Если бы речь шла не о клетке водоросли, а о нервной клетке, это бы привело к возникновению электрического сигнала и ее активации. Особые нейроны — ганглиозные клетки, расположенные в сетчатке, собирают сигналы от колбочек и палочек и передают их дальше в мозг. Оказалось, что если взять слепую крысу и ввести ей ген каналородопсина в ганглиозные клетки, то крыса обретает рудиментарное зрение[369]. Она начинает видеть не колбочками и палочками, а прямо ганглиозными клетками. Что именно ощущает при этом крыса, мы, конечно, не знаем, но она начинает успешно обходить препятствия.