Читаем Суперсила полностью

В обоих этих примерах мы можем обнаружить, что причины пространственного порядка лежат в симметрии законов физики, управляющих рассматриваемыми системами. Многие физические системы обладают устойчивыми состояниями, которые демонстрируют высокую степень простоты и симметрии. Разумеется, предстоит еще объяснить, каким образом системы приходят в такие состояния. Одна из причин заключается в том, что сложные состояния неустойчивы. Например, состояние атома водорода с наинизшей энергией сферически симметрично, тогда как большинство возбужденных состояний не обладает этим свойством. Аналогично жидкое гравитирующее тело принимает в состоянии равновесия (в отсутствие вращения) форму идеальной сферы. Мы убедились в том, что физические системы стремятся занять положение с минимальной энергией, это универсальный закон природы. Если система первоначально обладает избытком энергии, т.е. находится в возбужденном состоянии, то включаются всевозможные механизмы, стремящиеся освободить ее от этого избытка. Рано или поздно система переходит в состояние с наинизшей энергией, которое, как правило, является простейшим. По этой причине пространственный порядок представляет собой общее свойство нашего мира. Важно, однако, иметь в виду, что этот порядок обусловлен пространственным порядком, присущим законам физики. Если бы, например, сила тяжести оказалась более сложной и зависела не только от расстояния между двумя телами, но и от их взаимной ориентации, планеты двигались бы по гораздо более запутанным орбитам.

Обратимся теперь к временному порядку. Его можно увидеть в регулярном течении многих естественных процессов: тиканье часов, колебаниях атома, смене дня и ночи, зимы и лета. Вновь, как и при пространственном порядке, причины подобной регулярности можно отыскать в законах физики, которые часто допускают простое периодическое поведение. Периодическое движение (колебания) представляет собой, вероятно, самый распространенный в физике пример порядка. Волнообразные колебательные движения составляют существо всех квантовых движений; электромагнитные волны переносят теплоту и свет во Вселенной; планеты, звезды и галактики содержат объекты, движущиеся в пространстве по периодическим орбитам.

Кроме упорядоченного движения материальных тел существует и более глубокое проявление временного порядка, заключенное в самой сути законов природы (часто порядок такого рода считают само собой разумеющимся). Тот факт, что в природе вообще существуют законы, обеспечивает определенную последовательность эволюции Вселенной от данного момента времени к последующему. На фундаментальном уровне эта самосогласованность означает просто, что мир продолжает существовать. Более того, законы не изменяются от одной эпохи к другой (иначе их нельзя было бы назвать законами). Земля сегодня движется по эллиптической орбите вокруг Солнца так же, как и на протяжении миллионов лет.

Пространственный и временной порядки – это не просто случайные особенности мира: оба этих порядка присущи фундаментальным физическим законам. Именно законы, а не конкретные физические системы заключают в себе поразительную упорядоченность мира. Эти законы вдвойне замечательны, поскольку допускают как порядок, выражающийся в пространственной и временной простоте, так и порядок, проявляющийся в сложной организации. Один и тот же набор законов обусловливает и простую форму кристаллов, и возникновение столь сложных систем, как живые организмы. Вполне можно представить и такую Вселенную, в которой законы допускали бы лишь простые типы поведения (например, регулярные движения планет), а чрезвычайно сложные структуры (например, полимеры, не говоря уже о ДНК) там не могли бы существовать. Действительно, кажется совершенно необычным, что столь простые законы современной физики обеспечивают все разнообразие и сложность реального мира. Но дело обстоит именно так.

Имеет ли существование какой-то смысл?

Интересно поставить вопрос о том, насколько вероятно с точки зрения законов физики существование сложных систем или сколь точно эти законы должны быть согласованы между собой?

В своей знаменитой статье в журнале Nature английские астрофизики Бернар Карр и Мартин Рис пришли к выводу, что мир чрезвычайно чувствителен даже к самым малым вариациям законов физики, так что, если бы известный нам конкретный набор законов как-то изменился, Вселенная также изменилась бы до неузнаваемости.

Перейти на страницу:

Похожие книги

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное