На рис. 17 показан типичный процесс, обусловленный слабым взаимодействием. Экспериментатор наблюдает его при столкновении (рассеянии) нейтрона (n) и нейтрино (нюе), когда обе частицы превращаются в протон (р) и электрон (е). При более детальном описании с использованием частиц-переносчиков d-кварк в нейтроне превращается в u-кварк (тем самым нейтрон превращается в протон) с испусканием виртуальной частицы (на диаграмме показана пунктиром), которая затем поглощается нейтрино (при этом нейтрино превращается в электрон). Так как протон обладает положительным электрическим зарядом, виртуальная частица должна уносить отрицательный заряд (по закону сохранения электрического заряда). Этот отрицательный заряд “оседает” на электроне. Отрицательно заряженный переносчик слабого взаимодействия получил название W–чacтицы. Должна существовать и положительно заряженная античастица W+, которая служила бы переносчиком слабого взаимодействия, например, от антинейтрона к антинейтрино.
Рис.17.
Частицы W+ и W– являются переносчиками двух из трех связанных со слабым взаимодействием полей, предсказанных теорией Вайнберга – Салама. Третье поле соответствует электрически нейтральной частице-переносчику, получившей название Z-частицы. Когда теория Вайнберга – Салама была сформулирована впервые, мысль о нейтральной частице – переносчике слабого взаимодействия была новой. Существование Z-частицы означало бы, что слабое взаимодействие могло бы не сопровождаться переносом электрического заряда. Пример такого процесса приведен на рис. 18: электрон и нейтрино рассеиваются, обмениваясь Z-частицей. В 1973 г. в длительном эксперименте, проведенном в ЦЕРНе, было продемонстрировано существование нейтральных переносчиков слабого взаимодействия. Этот результат поднял престиж теории Вайнберга – Салама.
Несмотря на столь счастливое согласие между теорией и экспериментом, описанию слабого взаимодействия как калибровочного поля еще предстояло преодолеть серьезное препятствие. Дело в том, что калибровочные поля по своей природе дальнодействующие, казалось, что теория неизбежно должна предсказывать нулевую массу покоя частиц-переносчиков, как в случае фотона. В действительности же слабое взаимодействие существует лишь на очень малых расстояниях, и частицы – переносчики слабого взаимодействия имеют огромную массу. Если в теории W– и Z-частицам просто приписать какую-нибудь массу, то калибровочная инвариантность нарушится. Как наилучшим образом совместить несовместимое – калибровочную симметрию и частицы-переносчики с ненулевой массой покоя?
Рис.
Решение этой головоломки было найдено Вайнбергом и Саламом в 1967 г. В основе его лежала остроумная идея, получившая название спонтанного нарушения симметрии. Вот как оно происходит.
Представим себе гладкую поверхность в форме мексиканского сомбреро, покоящегося на горизонтальном основании (рис. 19). Поместим на верхушку “сомбреро” шарик. В такой конфигурации система обладает очевидной симметрией, а именно: она не меняет своего вида при поворотах вокруг вертикальной оси, проходящей через центр шляпы. Если рассматривать только гравитацию, то никакого выделенного горизонтального направления здесь нет (гравитация действует по вертикали); все точки на полях сомбреро равнозначны.