29. Peters K.
& Langseth M.G. (1975) Long Term Temperature Observations on the Lunar Surface at Apollo Sites 15 and 17. Technical Report 3-CU-3-75, Lamont – Doherty Geological Observatory of Columbia University. URL: https://www.lpi.usra.edu/lunar/ALSEP/pdf/31111000591808.pdf.30. Nagihara S.
et al. Examination of the Long‐Term Subsurface Warming Observed at the Apollo 15 and 17 Sites Utilizing the Newly Restored Heat Flow Experiment Data From 1975 to 1977 // JGR Planets 123, 5 (2018). doi: 10.1029/2018JE005579.31. Watters T. R.
et al. Shallow Seismic Activity and Young Thrust Faults on the Moon // Nature Geoscience 12 (2019). doi: 10.1038/s41561-019-0362-2.32. Saal A. E.
et al. Volatile Content of Lunar Volcanic Glasses and the Presence of Water in the Moon’s Interior // Nature 454 (2008). doi: 10.1038/nature07047.33. Milliken R. E.
& Li S. Remote Detection of Widespread Indigenous Water in Lunar Pyroclastic Deposits // Nature Geoscience 10 (2017). doi: 10.1038/ngeo2993.34. Barnes J. J.
et al. An Asteroidal Origin for Water in the Moon // Nature Communications 7 (2016). doi: 10.1038/ncomms11684.6. Поверженный бог
1. Howell Elizabeth
. Mariner 9: First Spacecraft to Orbit Mars // Space.com (November 08, 2018). URL: https://www.space.com/18439-mariner-9.html.2. Andrews-Hanna J. C., Zuber M. T.
& Banerdt W. B. The Borealis Basin and the Origin of the Martian Crustal Dichotomy // Nature 453 (2008). doi: 10.1038/nature07011.3. Leone G.
et al. Three‐Dimensional Simulations of the Southern Polar Giant Impact Hypothesis for the Origin of the Martian Dichotomy // Geophysical Research Letters 41, 24 (2014). doi: 10.1002/2014GL062261.4. Wilson L.
& Mouginis-Mark P. J. Phreatomagmatic Explosive Origin of Hrad Vallis, Mars // JGR Planets 108, E8 (2003). doi: 10.1029/2002JE001927.5. Brož, P
. & Hauber E. Hydrovolcanic Tuff Rings and Cones as Indicators for Phreatomagmatic Explosive Eruptions on Mars // JGR Planets 118, 8 (2013). doi: 10.1002/jgre.20120.6. Wall K. T.
et al. Determining Volcanic Eruption Styles on Earth and Mars from Crystallinity Measurements // Nature Communications 5 (2014). doi: 10.1038/ncomms6090.7. Jet Propulsion Laboratory. (2016) Found: Clues about Volcanoes Under Ice on Ancient Mars. [Press release] URL: https://www.jpl.nasa.gov/news/news.php?feature=6472.
8. Brož P.
et al. Experimental Evidence for Lava-Like Mud Flows Under Martian Surface Conditions // Nature Geoscience 13 (2020). doi: 10.1038/s41561-020-0577-2.9. NASA. (2018) Jamming with the “Spiders” from Mars. [Press release] URL: https://www.nasa.gov/image-feature/jpl/jamming-with-the-spiders-from-mars.
10. The Planetary Society. Every Mission to Mars, Ever. [Factbox] URL: https://www.planetary.org/space-missions/every-mars-mission.
11. Andrews Robin George
. Rocks, Rockets and Robots: The Plan to Bring Mars Down to Earth // Scientific American (February 6, 2020). URL: https://www.scientificamerican.com/article/rocks-rockets-and-robots-the-plan-to-bring-mars-down-to-earth1/.12. International Meteorite Collectors Association. Martian Meteorites. [Factbox] URL: https://imca.cc/mars/martian-meteorites.htm.
13. Lapen T. J.
et al. Two Billion Years of Magmatism Recorded from a Single Mars Meteorite Ejection Site // Geology 3, 2 (2017). doi: 10.1126/sciadv.1600922.14. Carr M.H
. & Head III J.W. Geologic History of Mars // Earth and Planetary Science Letters 294 (2010). doi: 10.1016/j.epsl.2009.06.042.15. Bouley S.
et al. The Revised Tectonic History of Tharsis // Earth and Planetary Science Letters 488 (2018). doi: 10.1016/j.epsl.2018.02.019.16. Lillis R. J.
et al. Demagnetization of Crust by Magmatic Intrusion Near the Arsia Mons Volcano: Magnetic and Thermal Implications for the Development of the Tharsis Province, Mars Journal of Volcanology and Geothermal Research 185, 1–2 (2009). doi: 10.1016/j.jvolgeores.2008.12.007.17. Bouley S
. et al. Late Tharsis Formation and Implications for Early Mars // Nature 531 (2016). doi: 10.1038/nature17171.18. Ojha L.
et al. Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars // Nature Geoscience 8 (2015). doi: 10.1038/ngeo2546.19. DiBiase R.A.
et al. Deltaic Deposits at Aeolis Dorsa: Sedimentary Evidence for a Standing Body of Water on the Northern Plains of Mars // JGR Planets 118, 6 (2013). doi: 10.1002/jgre.20100.20. Bibring J-P.
et al. “Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data // Science 312, 5772 (2006). doi: 10.1126/science.1122659.21. Murchie S. L.
et al. A Synthesis of Martian Aqueous Mineralogy After 1 Mars Year of Observations from the Mars Reconnaissance Orbiter // JGR Planets 114, E2 (2009). doi: 10.1029/2009JE003342.