Оба предыдущих примера функционально эквивалентны. В сущности, реализация CoCreateInstance просто осуществляет внутренний вызов CoCreateInstanceEx:
// pseudo-code for implementation of CoCreateInstance API
// псевдокод для реализации API-функции
CoCreateInstance HRESULT
CoCreateInstance(REFCLSID rclsid, IUnknown *pUnkOuter, DWORD dwCtsCtx, REFIID riid, void **ppv)
{
MULTI_QI rgmqi[] = { &riid, 0, 0 };
HRESULT hr = CoCreateInstanceEx(rclsid, pUnkOuter, dwClsCtx, 0, 1, rgmqi);
*ppv = rgmqi[0].pItf;
return hr;
}
Хотя возможно выполнить запрос на удаленную активацию с использованием CoCreateInstance, отсутствие параметра COSERVERINFO не позволяет вызывающему объекту задать явное имя хоста. Вместо этого вызов CoCreateInstance и задание только флага CLSCTX_REMOTE_SERVER предписывает SCM использовать конфигурационную информацию каждого CLSID для выбора хост-машины, которая будет использоваться для активации объекта.
Рисунок 3.4 показывает, как параметры CoCreateInstanceEx преобразуются в параметры CoGetClassObject и IClassFactory::CreateInstance. Вопреки распространенному заблуждению, CoCreateInstanceEx не осуществляет внутренний вызов CoGetClassObject. Хотя между двумя этими методиками нет логических различий, реализация CoCreateInstanceEx будет более эффективной при создании одного экземпляра, так как в этом случае не будет лишних вызовов клиент-сервер, которые могли бы понадобиться, если бы была использована CoGetClassObject. Если, однако, будет создаваться большое число экземпляров, то клиент может кэшировать указатель объекта класса и просто вызвать IClassFactory::CreateInstance несколько раз. Поскольку IClassFactory::CreateInstance является всего лишь вызовом метода и не идет через SCM, он отчасти быстрее, чем вызов CoCreateInstanceEx. Порог, за которым становится более эффективным кэшировать объект класса и обходить CoCreateInstanceEx, будет изменяться в зависимости от эффективности IPC и RPC на используемых хост-машинах и сети.
Снова интерфейс и реализация
В предыдущих примерах активации со стороны клиента осуществлялись явные вызовы API-функций СОМ для активации. Часто может понадобиться много шагов для корректной связи с требуемым объектом (например, создать один тип объекта, затем запросить его для ссылки на другой объект, основанный на некоторой информации в запросе). Чтобы избавить клиентов от заботы об алгоритмах по поиску объектов или их созданию, СОМ поддерживает стандартный механизм назначения произвольных имен объектам, на которые они ссылаются. Этот механизм основан на использовании локаторных объектов (locator objects), которые инкапсулируют свой алгоритм связи, скрывая его за стандартным постоянным интерфейсом. Эти локаторы объектов формально называются моникерами и являются просто СОМ-объектами, экспортирующими интерфейс IMoniker. Интерфейс IMoniker является одним из наиболее сложных интерфейсов СОМ; тем не менее, он объявляет один метод, чрезвычайно важный для данной дискуссии, а именно BindToObject:
interface IMoniker : IPersistStream { HRESULT BindToObject([in] IBindCtx *pbc, [in, unique] IMoniker *pmkToLeft, [in] REFIID riid, [out, iid_is(riid)] void **ppv);
// remaining methods deleted for clarity
// остальные методы удалены для ясности
}
Напоминаем, что определения интерфейса являются абстрактными и достаточно неопределенными для того, чтобы допустить множество интерпретаций точной семантики каждого метода. Абстрактную семантику BindToObject можно сформулировать так: «запусти свой алгоритм поиска или создания объекта и возврати типизированный интерфейсный указатель на этот объект, когда он создан или найден». Когда клиент вызывает ВindToObject на моникер, у него нет точных представлений о том, как именно моникер превратит свою внутреннюю структуру в указатель на объект. Имея три различных моникера, можно использовать три совершенно различных алгоритма. Такая полиморфность поведения и делает идиому моникера столь действенной.