При сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс
Свободные заряженные частицы, особенно электроны, легко перемещаются под действием электрического поля. Поэтому в состоянии равновесия пространственные заряды входящих в состав плазмы отрицательных электронов и положительных ионов должны компенсировать друг друга так, чтобы полное поле внутри плазмы было равно нулю. Именно отсюда вытекает необходимость практически точного равенства плотностей электронов и ионов в плазме – ее квазинейтральности. Нарушение квазинейтральности плазмы в объеме, ею занимаемом, ведет к немедленному появлению сильных электрических полей пространственных зарядов, тут же восстанавливающих квазинейтральность.
• низкотемпературная плазма с температурой внутри её ниже 105 К;
• высокотемпературная плазма с температурой выше 106–108 К.
На сегодняшний день плазму получают следующими способами:
• электрическим разрядом в газах (дуговой, искровой, тлеющий);
• в процессах горения и взрыва.
Плазма обладает так называемыми
Наиболее широкое распространение получили атмосферные (при нормальном давлении) плазменные методы обработки материалов – резание, напыление, наплавка, сварка, выращивание монокристаллов.
В 1980-х годах эффективное развитие получили
Плазму получают в специальных устройствах – плазмотронах.
Принцип работы плазмотрона заключается в следующем: холодный газ непрерывным потоком продувают через область, где горит стационарный разряд. Газ нагревается, ионизируется, превращается в плазму, которая истекает в виде плазменной струи.
•
•
•
•
•
Наибольшее практическое применение получили плазмотроны на дуговом электрическом разряде. Дуговой плазмотрон может работать на постоянном или переменном токе. Мощность дуговых плазмотронов – от 102 до 107 Вт.
Температура на срезе сопла – 3000–20 000 °C. Скорость истечения струи 1–104 м/с, промышленный к.п. д – 50–90 %. Плотность тока в плазмотронах достигает 100 А/мм2.
В качестве плазмообразующего газа используют
Применяют два основных плазменных источника нагрева для сварки:
•
•
Соответственно применяют два типа плазменных горелок.
В горелках (рис. 9а) для получения плазменной струи