Первая волна ИИ основывается на действиях интернет-пользователей, которые автоматически помечают данные при просмотре. Основная идея ИИ бизнеса заключается в том, что традиционные компании также автоматически помечают огромные объемы данных в течение десятилетий. Например, страховые компании выплачивают страховку при несчастных случаях и выявляют мошенников, банки выдают кредиты и документируют сроки их погашения, а больницы ведут учет диагнозов и показателей выживаемости. Все эти действия создают размеченные точки данных: к каждому набору признаков привязывается определенный результат. Но до недавнего времени наиболее традиционным предприятиям было трудно использовать эти данные на практике. ИИ бизнеса ищет в базах данных скрытые корреляции, которые люди могут не заметить. Он опирается на все когда-либо принятые решения и достигнутые результаты и использует помеченные данные для обучения алгоритма, способного работать лучше самых опытных специалистов. Это потому, что люди обычно делают прогнозы на основе показательных признаков – тех данных, которые тесно связаны с результатом, часто посредством четкой причинно-следственной связи. Например, при прогнозировании вероятности того, что человек заболеет диабетом, показательными признаками будут его вес и индекс массы тела. Алгоритмы ИИ, конечно же, учитывают показательные признаки, но они также принимают во внимание тысячи других, менее заметных факторов: периферийные точки данных, на первый взгляд не важные, но способные повлиять на прогноз при сопоставлении их с десятками миллионов конкретных случаев. Человек нередко не может увидеть в этих корреляциях причинно-следственную связь: например, почему заемщики, которые берут кредиты в среду, погашают эти кредиты быстрее? Но алгоритмы, способные объединить тысячи показательных и незаметных признаков с помощью сложнейших математических операций, превзойдут даже первоклассных специалистов-людей в решении многих аналитических бизнес-задач.
Подобные способы оптимизации хорошо работают в отраслях, где накоплены большие объемы структурированных данных. «Структурированными» можно назвать данные, которые категоризированы, размечены и доступны для поиска. Это, например, массивы данных о ценах на акции, использовании кредитных карт и статистика невыплаченных ипотечных кредитов.
Как работает ИИ для бизнеса
Еще в 2004 году компании Palantir и IBM Watson предлагали предпринимателям и правительствам услуги бизнес-консалтинга на основе анализа больших объемов данных. Но массовое внедрение глубокого обучения в 2013 году сделало эти услуги более доступными и породило новых конкурентов, таких как Element AI в Канаде и 4th Paradigm в Китае.
Эти стартапы работают с традиционными компаниями или организациями, предлагая им внедрить свои алгоритмы в существующие базы данных, чтобы найти возможные способы оптимизации. Они помогают своим клиентам эффективно выявлять мошенничество, совершать более разумные сделки и обнаруживать нерациональные звенья в цепочках поставок. Ранние проекты на основе ИИ для бизнеса были сосредоточены в финансовом секторе, потому что он, естественно, построен на наиболее тщательном анализе данных. Эта отрасль работает с хорошо структурированной информацией и имеет четкие показатели, которые и необходимо оптимизировать. Это объясняет, почему Соединенные Штаты вырвались вперед и раньше других разработали приложения для применения ИИ в области бизнеса. Крупные американские корпорации уже давно собирают большие объемы данных и хранят их в хорошо структурированных форматах. Они часто используют программное обеспечение для ведения бухгалтерии, учета инвентаря и управления взаимоотношениями с клиентами. Как только данные введены в формы, такие компании, как Palantir, могут вступить в игру и с помощью инструментов ИИ найти решения, которые позволяют сэкономить средства и увеличить прибыль.
Однако в Китае такой подход неприменим. Китайские компании никогда массово не использовали корпоративное программное обеспечение или стандартизированные хранилища данных, предпочитая индивидуальные системы ведения бухгалтерии. Часто эти системы не масштабируются и плохо интегрируются с существующим программным обеспечением, что усложняет очистку и структурирование данных. Недостаток данных также делает результаты оптимизации менее точными. Еще одна проблема связана с особенностями деловой культуры: китайские компании тратят гораздо меньше денег на сторонний консалтинг, чем американские. Многие китайские предприятия старой школы больше напоминают феодальные вотчины, чем современные организации, и их руководители часто считают, что внешняя экспертиза – это пустая трата денег.
Попрощайтесь с вашим банкиром