Читаем Сверхдержавы искусственного интеллекта полностью

Различия между двумя подходами можно увидеть на примере простой задачи, в которой надо определить, есть ли на рисунке кошка. Чтобы помочь программе принять решение, основанный на правилах метод требует установить правило типа «если – то»: если сверху круга расположены два треугольника, то, возможно, кошка на рисунке есть. При использовании метода нейронных сетей программа получит миллионы образцов в виде фотографий с пометкой «кошка» или «нет кошки» и попытается самостоятельно выяснить, какие признаки в миллионах изображений наиболее тесно коррелируют с пометкой «кошка». В 1950-х и 1960-х годах ранние версии искусственных нейронных сетей дали многообещающие результаты и наделали немало шума. Но потом в 1969 году лагерь сторонников правил вырвался вперед, используя аргумент, что нейронные сети ненадежны и ограничены в применении. Метод нейронных сетей быстро вышел из моды, и в 1970-х годах наступила первая «зима искусственного интеллекта». В течение последующих десятилетий о нейронных сетях то вспоминали, то снова забывали. В 1988 году я использовал подход, похожий на метод нейронных сетей (скрытые марковские модели), чтобы создать Sphinx – первую в мире независимую от говорящего программу для распознавания непрерывной речи[7]. О моем достижении написали в New York Times[8]. Но этого оказалось недостаточно, и с началом долгого «ледникового периода» в области ИИ, растянувшегося почти на все 1990-е годы, о нейронных сетях снова забыли.

В конечном счете сегодняшнему возрождению метода способствовали технологические прорывы, касающиеся двух важных базовых элементов нейронных сетей. Я имею в виду большую вычислительную мощность и большие объемы данных. Данные «обучают» программу распознавать шаблоны, обеспечивая ее множеством образцов, а вычислительная мощность позволяет ей быстро анализировать эти образцы.

На заре ИИ, в 1950-х годах, не хватало как данных, так и вычислительной мощности. Но за прошедшие десятилетия все изменилось. Сегодня вычислительная мощность вашего смартфона в миллионы раз больше, чем мощность передовых компьютеров НАСА, отправивших Нила Армстронга на Луну в 1969 году. Появление интернета привело к накоплению самых разнообразных текстов, изображений, видео, кликов, покупок, твитов и так далее. В распоряжении исследователей оказались огромные объемы данных для обучения нейронных сетей, а также дешевые вычислительные мощности высокой производительности. Но сами сети все еще были сильно ограничены в возможностях. Для получения точных решений сложных задач требуется много слоев искусственных нейронов, но на тот момент исследователи еще не нашли способ эффективно обучать слои по мере их добавления. Прорыв в этом направлении, наконец, состоялся в середине 2000-х годов, когда ведущий исследователь Джеффри Хинтон обнаружил способ эффективного обучения добавленных слоев. Нейронные сети словно получили дозу стероидов и обрели невиданную мощь, достаточную, чтобы распознавать речь и объекты. Вскоре нейронные сети, названные новым модным термином «глубокое обучение», уже могли превзойти старые модели в решении различных задач. Однако укоренившиеся предрассудки о методе нейронных сетей заставили многих исследователей ИИ игнорировать технологию, которая тем не менее показывала выдающиеся результаты. Поворотный момент наступил в 2012 году, когда сеть, построенная командой Хинтона, одержала убедительную победу в международном конкурсе компьютерного зрения[9][10].

После десятилетий самоотверженных исследований нейронные сети в одночасье вышли на передний план, теперь в виде глубокого обучения. Этот прорыв обещал растопить лед последней «зимы» ИИ и впервые позволить по-настоящему использовать его силу для решения ряда реальных проблем. Исследователи, футуристы и технические специалисты – все начали твердить о колоссальном потенциале нейросетей. Ожидалось, что скоро они научатся понимать человеческую речь, переводить документы, распознавать изображения, прогнозировать поведение покупателей, выявлять мошенничества и принимать решения о кредитовании, а еще подарят новые способности роботам – от зрения до умения водить машину.

За кулисами глубокого обучения

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

1941 год. Удар по Украине
1941 год. Удар по Украине

В ходе подготовки к военному противостоянию с гитлеровской Германией советское руководство строило планы обороны исходя из того, что приоритетной целью для врага будет Украина. Непосредственно перед началом боевых действий были предприняты беспрецедентные усилия по повышению уровня боеспособности воинских частей, стоявших на рубежах нашей страны, а также созданы мощные оборонительные сооружения. Тем не менее из-за ряда причин все эти меры должного эффекта не возымели.В чем причина неудач РККА на начальном этапе войны на Украине? Как вермахту удалось добиться столь быстрого и полного успеха на неглавном направлении удара? Были ли сделаны выводы из случившегося? На эти и другие вопросы читатель сможет найти ответ в книге В.А. Рунова «1941 год. Удар по Украине».Книга издается в авторской редакции.В формате PDF A4 сохранен издательский макет книги.

Валентин Александрович Рунов

Военное дело / Публицистика / Документальное
Кузькина мать
Кузькина мать

Новая книга выдающегося историка, писателя и военного аналитика Виктора Суворова, написанная в лучших традициях бестселлеров «Ледокол» и «Аквариум» — это грандиозная историческая реконструкция событий конца 1950-х — первой половины 1960-х годов, когда в результате противостояния СССР и США человечество оказалось на грани Третьей мировой войны, на волоске от гибели в глобальной ядерной катастрофе.Складывая известные и малоизвестные факты и события тех лет в единую мозаику, автор рассказывает об истинных причинах Берлинского и Карибского кризисов, о которых умалчивают официальная пропаганда, политики и историки в России и за рубежом. Эти события стали кульминацией второй половины XX столетия и предопределили историческую судьбу Советского Союза и коммунистической идеологии. «Кузькина мать: Хроника великого десятилетия» — новая сенсационная версия нашей истории, разрушающая привычные представления и мифы о движущих силах и причинах ключевых событий середины XX века. Эго книга о политических интригах и борьбе за власть внутри руководства СССР, о противостоянии двух сверхдержав и их спецслужб, о тайных разведывательных операциях и о людях, толкавших человечество к гибели и спасавших его.Книга содержит более 150 фотографий, в том числе уникальные архивные снимки, публикующиеся в России впервые.

Виктор Суворов

Публицистика / История / Образование и наука / Документальное