Читаем Сверхзвуковые самолеты полностью

В производственной практике используются травильные среды двух типов: кислотные и щелочные. Кислотные ванны вызывают межкристаллитную коррозию. Этот процесс очень производителен и находит применение прежде всего при обработке стальных материалов. Однако таким способом не удается изготовить детали с высокой размерной точностью ввиду трудности контроля скорости процесса травления. Кроме того, компоненты кислотных растворов относительно дороги. Щелочные растворы значительно дешевле, процесс травления в них также производителен (если он проводится при температуре 80-90°С), а скорость травления можно просто и довольно точно контролировать. С учетом меньших затрат на материалы чаще всего применяются растворы едкого натра.

Таким образом, технический прогресс в самолетостроении в 1950-1960-х гг. привел к освоению новых технологических методов изготовления и соединения частей планера, что не только значительно снизило собственную массу самолета, но и позволило повысить прочность планера, особенно усталостную. Предполагается, что уже в ближайшее время будет достигнут дальнейший прогресс в этой области, в частности, благодаря лучшему исследованию воздействий окружающей среды, совершенствованию расчетных методов, широкому применению средств повышения надежности и моноблочных конструкций и т.п., а также в связи с упомянутыми выше работами в области активного управления и увеличения числа управляемых степеней свободы самолета.

Более точное определение воздействий окружающей среды оказывает непосредственное влияние на определение параметров конструкции в том смысле, что уменьшает «степень незнания», которая вынужденно учитывается в расчетах в виде коэффициентов запаса. Это относится не только к новым исследованиям, но и к накоплению статистических данных, касающихся, в частности, знакопеременных нагрузок.

Благодаря прогрессу вычислительной техники стало возможным применение новых методов расчета (например, метод конечных элементов), учитывающих такие специфические характеристики материалов, как пластичность, анизотропия и т.д. Увеличение степени детализации расчетов оказалось важным средством, позволившим существенно продвинуться по пути оптимизации конструкции.

Концепция безопасных повреждений нашла применение в самолетостроении из-за заботы скорее о безопасности, чем об улучшении летных характеристик, однако уже сейчас она оказывает существенное влияние также и на массу самолета, а особенно на прочностную надежность планера. Эта концепция предусматривает расчет каждой силовой детали планера, исходя из предпосылки, что в детали могут существовать дефекты, возникшие во время ее изготовления и имеющие величину, равную пороговым значениям чувствительности обычно применяемых методов контроля. Следовательно, каждая деталь в условиях нормальной эксплуатации должна выдерживать переменные нагрузки без катастрофического роста дефектов и снижения прочности. До недавнего времени реализация этой концепции сводилась к местным усилениям конструкции. Предполагается, что дальнейший прогресс в этой области связан с более точным определением усталостного роста дефектов и учетом его в прочностных расчетах. Таким образом, оптимизация конструкции должна производиться с учетом коэффициента хрупкости материала так же, как это делалось ранее в отношении статической прочности, а теперь усталостной. Таким путем может быть повышена надежность конструкции планера и упрощена технология изготовления самолета.


Рис. 1.41. Модульная конструкция планера самолета YF-16.


Надежды на определенный прогресс в самолетостроении связываются с применением модульной конструкции планера. Такой подход позволяет в процессе производства проводить модернизацию выпускаемой модели путем замены целых узлов другими, более совершенными.

Среди авиационных материалов и в дальнейшем важное место будут занимать сплавы алюминия. Проводятся дальнейшие технологические исследования алюминиевых и других известных сплавов и материалов; большое внимание уделяется разработке новых сплавов и армированных волокнами композитов.

Важное место среди материалов для сверхзвуковых самолетов занимают сплавы титана. Титан отличается превосходными физическими и механическими свойствами: его прочность на растяжение в 3 раза больше, чем у алюминия, и равняется прочности железа, а плотность больше, чем у алюминия, только в 1,7 раза и в несколько раз меньше плотности железа. После введения соответствующих легирующих добавок и пластической обработки (обжатием) прочность титана возрастает до уровня прочности высоколегированной стали и сохраняется до температуры ~ 600°С. Титан имеет также хорошие технологические качества: его можно вальцевать, ковать, подвергать холодной гибке, сваривать и т.п.; он также стоек к воздействию морской воды. Благодаря таким качествам титан стал незаменимым конструкционным материалом в сверхзвуковой авиации, причем его доля в общей массе конструкции самолета непрерывно возрастает.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже