Читаем Свет невидимого полностью

В наши дни атомная энергетика — это уже будни науки. Мы гордимся тем, что в нашей стране создана первая в мире электростанция, работающая на атомной энергии. Мы любуемся красавцами ледоколами «Ленин» и «Арктика». Но не удивляемся этим достижениям. Они стали буднями, и это очень радостные будни.

Впрочем, если вы решите поговорить об энергетическом использовании ядерных реакторов с каким-либо специалистом-физиком, то увидите, как при первом же вопросе на лице вашего собеседника промелькнет сложная гамма чувств, среди которых основными будут гордость и… горечь. Гордость — за выдающиеся достижения современной физики, достижения, которые сделали эту науку лидером естествознания XX века, а горечь…

Горечь появляется тогда, когда физики подсчитывают, какая доля энергии урана, распавшегося в ядерном реакторе, используется энергетиками. Окончательный результат обычно приводит их в глубокое уныние. Да и то сказать: кого не огорчит коэффициент полезного действия, равный 0,2–0,3? Оказывается, энергетики используют примерно одну треть энергии, которая высвобождается при распаде ядер урана в реакторе.

Из всей энергии, выделяющейся в ядерном реакторе при делении ядер урана, используется лишь та ее часть, которая превращается в тепло при разлете ядерных осколков и при радиоактивном распаде этих осколков. Неудивительно, что эта часть энергии составляет лишь долю, причем достаточно скромную, от величины всей высвобождающейся энергии. Остальная энергия аккумулируется в образовавшихся продуктах деления урана — а это не что иное, как разнообразные химические элементы. Уточним, радиоактивные элементы.

Причина радиоактивности? Именно в этих осколках сосредоточена основная доля энергии, высвобождающейся при делении ядер урана. Стремясь освободиться от избыточной энергии, ядра образовавшихся элементов выбрасывают электроны либо гамма-кванты, то есть подвергаются радиоактивному распаду.

Для химиков особенно важно то, что в отходах ядерных реакторов, в урановой «золе», содержатся искусственные радиоактивные изотопы большей части элементов системы Менделеева. Вот почему, если еще лет сорок назад искусственные радиоактивные изотопы были доступны единичным лабораториям, то сегодня каждому студенту-химику при выполнении им практических работ предлагают разнообразный набор различных радиоактивных элементов.

Теперь становится понятным, что так печалило физиков. Для кручины у них имелись достаточно веские основания: они попросту не знали, что делать с таким количеством радиоактивных элементов, какие накапливаются в ядерных реакторах. А радиоактивность эта действительно громадна. Достаточно даже не очень большому реактору проработать сутки, и там накопится такое количество продуктов распада урана, какое по своей радиоактивности в десятки раз превышает радиоактивность элементов, выделенных во всех лабораториях и заводах со времени открытия радиоактивности до того времени, когда был сконструирован первый реактор (1942).

Число ядерных реакторов на земном шаре непрерывно увеличивается. И уже почти 30 лет со страниц газет не сходит выражение «радиоактивные отходы». Сотни ученых в десятках стран ломали голову над тем, что же делать с радиоактивными отходами, которые непрерывно и во все возрастающем количестве вырабатывают ядерные реакторы.

Чего только не предлагали!

Закапывать в глубокие бетонные ямы. И закапывали.

Прятать в заброшенных шахтах. И прятали.

Топить в глубоких океанских впадинах. И топили.

Запускать в ракетах в межпланетное пространство. И… Нет, пока еще не запускали. И по-видимому, не столько потому, что такой способ избавления от ядерной «золы» чрезмерно дорог, сколько из-за опасений, что при запуске ракеты может случиться какая-нибудь неприятность и опасный шлак развеется в атмосфере.

Конечно, джинна, выпущенного из бутылки, можно было бы в данном случае загнать обратно: остановить ядерные реакторы и тогда не будет никаких отходов. Но этот выход, разумеется, никого не устраивает.


* * *

Плохо физикам — в ядерных реакторах пропадает зря много энергии. Печалятся и химики — арсенал имеющихся в их распоряжении средств для проведения реакций скуден и, главное, не всегда удовлетворителен. Но когда плохо ученым, и особенно если эти ученые физики и химики, вывод, как правило, находится. Вот и здесь…

* * *


Перейти на страницу:

Похожие книги

Почему не иначе
Почему не иначе

Лев Васильевич Успенский — классик научно-познавательной литературы для детей и юношества, лингвист, переводчик, автор книг по занимательному языкознанию. «Слово о словах», «Загадки топонимики», «Ты и твое имя», «По закону буквы», «По дорогам и тропам языка»— многие из этих книг были написаны в 50-60-е годы XX века, однако они и по сей день не утратили своего значения. Перед вами одна из таких книг — «Почему не иначе?» Этимологический словарь школьника. Человеку мало понимать, что значит то или другое слово. Человек, кроме того, желает знать, почему оно значит именно это, а не что-нибудь совсем другое. Ему вынь да положь — как получило каждое слово свое значение, откуда оно взялось. Автор постарался включить в словарь как можно больше самых обыкновенных школьных слов: «парта» и «педагог», «зубрить» и «шпаргалка», «физика» и «химия». Вы узнаете о происхождении различных слов, познакомитесь с работой этимолога: с какими трудностями он встречается; к каким хитростям и уловкам прибегает при своей охоте за предками наших слов.

Лев Васильевич Успенский

Детская образовательная литература / Языкознание, иностранные языки / Словари / Книги Для Детей / Словари и Энциклопедии