Читаем Свет в море полностью

А как изменится световой пучок, пройдя в среде расстояние z? Разобьем это расстояние на совокупность достаточно малых отрезков Δz, в каждом из которых ослабление будет равно εФΔz, где Ф — значение светового потока в начале этого отрезка, а затем просуммируем ослабление на всех этих отрезках. Можно показать, что величина светового потока, прошедшего расстояние z в среде, будет равна: Фz = Ф0∙е-εz, где Ф0 — его первоначальная величина. Основание степени в этой формуле — число е — называют «натуральным», оно широко используется в высшей математике Число это иррациональное, его приближенное значение — 2,72.

Часто предпочитают иметь дело с обычным десятичным основанием. Наша формула и в этом случае сохраняет свой вид: Фz = Ф0∙10-ε'z, но здесь уже другой показатель ослабления; его значение в 2,3 раза меньше показателя ослабления ε (показателя при натуральном основании). Формула Фz = Ф0∙10-ε'z позволяет нагляднее представить себе физический смысл показателя ослабления: ε' — это величина, обратная расстоянию, которое пучок света должен пройти в среде, чтобы ослабиться в 10 раз. Используя полученную формулу, легко найти связь между показателем ослабления и прозрачностью:

И обратно: ε' = — lgθ.

Закон ослабления светового пучка в зависимости от расстояния, пройденного им в среде, был открыт Пьером Бугером. Значение его огромно, оно выходит далеко за рамки фотометрии. Закону Бугера подчиняется ослабление любого прямого потока энергии, будь это рентгеновы или гамма-лучи, электроны, нейтроны или какие-нибудь другие частицы. Тщательные исследования, проведенные академиком С. И. Вавиловым, показали, что закон Бугера справедлив в очень широких пределах изменения интенсивности света от 10-14 до 105 джоуль/сек∙м2 (т. е. примерно в 1020 раз). Отступления от этого закона удается наблюдать лишь в веществах с очень большими длительностями возбужденных состояний молекул (например, в урановых стеклах), или при необычайно высоких мощностях светового пучка[15].

Суть закона Бугера заключается в следующем: ослабление света на пути, составленном из нескольких конечных отрезков, равно не сумме, а произведению ослаблений на каждом из этих отрезков (в формуле Бугера этот факт подчеркивается тем, что оптическая длина пути, т. е. произведение показателя ослабления ε на длину отрезка z, находится в показателе степени).

Принцип действия современных прозрачномеров основан на использовании закона Бугера. В этих приборах измеряется световой поток, прошедший через слой воды определенной толщины (l). Сопоставляя значение этого светового потока с величиной падающего, легко найти показатель ослабления:

Ф = Ф010-ε'l, откуда:

Прозрачномеры делятся на две основные группы: приборы, измеряющие прозрачность непосредственно в море (приборы in situ), и приборы для измерения прозрачности в пробах воды на борту корабля или в стационарной лаборатории.

Приборы, входящие в первую группу, предназначены для вертикального зондирования в толще океана или для непрерывной регистрации прозрачности на заданном горизонте во время хода корабля. Первую модель подводного прозрачномера создал в 1922 г. Н. Н. Калитин. Он использовал фотоэлементы с внешним фотоэффектом. Спустя 10 лет, когда появились фотоэлементы с запирающим слоем, в частности селеновые, Г. Петтерссон разработал фотоэлектрический прозрачномер, получивший широкое распространение в океанографических исследованиях. Прозрачномер Петтерссона представлял собой герметическую камеру, в которой помещался источник света — лампочка и приемный фотоэлемент, а также прикрепленное на расстоянии одного метра зеркало. Свет от лампочки, пройдя через линзу, в виде слабо расходящегося пучка выходил в воду и попадал на зеркало, укрепленное на расстоянии одного метра от камеры. Отраженный от зеркала свет возвращался на фотоэлемент.

Петтерссоновский прозрачномер конструктивно был улучшен И. Йозефом. В его измерителе прозрачности имеются две герметичные камеры. В одной из них помещается коллимированный источник света — лампа накаливания с линзой и диафрагмой — и контрольный фотоэлемент. Во второй камере находились конденсорная линза и диафрагма, препятствующая попаданию дневного света на установленный в этой камере приемный фотоэлемент. Между линзой и диафрагмой помещался диск с цветными светофильтрами. Обе камеры жестко соединялись между собой трубой с прорезями, в которую свободно входила морская вода.

Создаваемые в дальнейшем у нас и за рубежом прозрачномеры принципиально не отличались от упомянутых приборов (лишь вместо фотоэлементов стали использоваться фотоумножители). Внешний вид и оптическая схема одного фотоэлектрического прозрачномера (ФПР) представлены на рис. 20 и 21. Конструкция этого прибора и его последующих модификаций разрабатывалась под руководством А. К. Карелина.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Глаза Сфинкса
Глаза Сфинкса

Знают ли туристы, что в Египте под песками близ Саккары покоятся миллионы мумий всевозможных животных? Под землей скрывается настоящий Ноев ковчег, который еще предстоит открыть! Что побудило древних египтян забальзамировать миллионы птиц и сотни тысяч крокодилов? Эрих фон Деникен изучил древние документы, в которых сообщается, что раньше на Земле жили «чудесные существа многих типов и отличные друг от друга». Порождены ли все эти существа человеческой фантазией — или на нашей планете действительно некогда жили все эти монстры? Да, жили — утверждает Деникен в своей захватывающей книге. Какой корифей генной инженерии придумал их и создал? Остроумно соединяя предания с научными данными, писатель и исследователь уводит нас в особый мир, где реальность оказывается интереснее, чем вымысел.DIE AUGEN DER SPHINX by Erich von Deniken© 1989 by C. Bertelsmann Verlag, Munchen a division of Verlagsgruppe Random House GmbHИсключительное право публикации книги на русском языке принадлежит издательству «София»Перев. с англ. — К.: «София»© «София», 2003

Петр Немировский , Эрих фон Дэникен

История / Научная литература / Проза / Роман / Современная проза / Образование и наука