Читаем Свет в море полностью

Конечно, физики моря не могли примириться с недостатками шкалы Фореля — Уле, ведь ясно, что для установления физических закономерностей прибор совершенно не подходит. Усилия были направлены на создание более совершенного измерителя цвета. И такой прибор в 1939 г. создал А. А. Гершун. Названный гидрофотометром прибор позволяет измерять спектральные коэффициенты яркости моря ρ, т. е. спектральные отношения яркости выходящего из моря потока излучения к яркости падающего.

Рис. 49. Гидрофотометр ФМ-46

1 — фотометрическая головка прибора; 2 — труба; 3 — молочное стекло; 4 — фотометрическая призма; 5 — пластинка молочного стекла; 6 — зеркало; 7 — поворотная рукоятка зеркала; 8 — азимутальный штурвал; 9 — светофильтры


Позднее конструкция прибора получила дальнейшее развитие. Сейчас используется разработанный К. В. Маллером прибор подобного типа — гидрофотометр ФМ-46, имеющий ряд значительных преимуществ по сравнению с прибором Гершуна.

Конструкция прибора ФМ-46 представлена на рис. 49, а его внешний вид — на рис. 50. Помимо технических усовершенствований (возможность проведения измерений с высокобортных судов, пригодность для работы в тропиках) прибор обладает весьма ценным качеством — он позволяет измерять яркость излучения, выходящего из толщи моря не только строго по вертикали (в надир), но и под различными углами к ней и в различных азимутах по отношению к Солнцу.

Рис. 50. Так измеряют цвет моря


Прибор ФМ-46 представляет собой визуальный фотометр, в котором сравниваются яркости двух фотометрических полей. Одно из них создается светом, выходящим из толщи моря (по данному выбранному направлению), а другое — естественным светом Солнца и небосвода, освещающим пластинку молочного стекла 5 на фотометрической головке прибора 1. Фотометрическая головка прибора снабжена трубой 2, нижний конец которой на 10–15 см погружен под воду. Для наблюдения толщи моря в заданном направлении на нижнем конце трубы укреплено визирное зеркало 6, которое можно наклонять рукояткой 7 (меняя угол с вертикалью) и поворачивать штурвалом 8 (меняя азимут). Шесть цветных светофильтров 9, установленных в приборе, позволяют измерять спектральный состав выходящего из толщи моря излучения. Яркости фотометрических полей уравниваются путем перемещения молочного стекла 3, находящегося между фотометрической призмой 4 и приемным стеклом 5. Сама труба состоит из трех секций, ее общая длина (в зависимости от высоты борта судна) может быть либо 3,5, либо 6 м. В комплект прибора входит также специальное приспособление для крепления его к борту судна. Наблюдения проводятся с борта судна, освещенного Солнцем. Для измерений требуется почти штилевая погода, и при волнении выше двух баллов наблюдения должны прекращаться. Измеряя коэффициенты яркости моря, необходимо следить за облачностью и фиксировать высоту Солнца.

Гидрофотометр ФМ-46 позволяет количественно оценить распределение энергии в спектре выходящего из толщи моря излучения, а ведь именно от этого спектрального распределения и зависит, как мы видели, «собственный» цвет моря. Кривые на рис. 45 и 47 получены с помощью гидрофотометра ФМ-46. Его преимущества перед шкалой Фореля — Уле очевидны: там — субъективная оценка, здесь — физическое измерение; там одна-единственная цифра — номер пробирки, здесь — две функциональные зависимости коэффициента яркости ρ: от длины волны — ρ(λ) и угла наблюдения ρ(ϴ1φ). Совокупность этих зависимостей содержит в себе всю информацию о собственном цвете моря, причем не только при наблюдении вертикально вниз, но и по другим направлениям.

Некоторые исследователи для оценки цвета моря используют Международную колориметрическую систему, но этот метод пока еще не получил широкого распространения в гидрооптике.

Почему в воде видно хуже, чем в воздухе

Способность глаза видеть в воде

Известный американский гидрооптик С. Дантли в одной из своих работ писал: «Нигде в природе принцип защитной окраски и маскировки не проявляется лучше, чем на местах кормления в море, где жизнь как хищников, так и их жертв одинаково зависит от способности видеть. Когда человек проникает в подводный мир и всматривается через стекло в подводное окружение, его успех и его безопасность зависят в большей степени от его зрительной способности»[27].

А если человек будет всматриваться в «подводное окружение» не через стекло, увидит ли он в воде что-нибудь? Нет, он сможет только отличить темное от светлого и различать неясные, расплывчатые контуры предметов. Человеческий глаз, способный видеть звезды, находящиеся от нас на расстоянии сотен световых лет, оказывается практически беспомощным в воде. Это объясняется условиями распространения света в водной среде и физиологией человеческого глаза.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Глаза Сфинкса
Глаза Сфинкса

Знают ли туристы, что в Египте под песками близ Саккары покоятся миллионы мумий всевозможных животных? Под землей скрывается настоящий Ноев ковчег, который еще предстоит открыть! Что побудило древних египтян забальзамировать миллионы птиц и сотни тысяч крокодилов? Эрих фон Деникен изучил древние документы, в которых сообщается, что раньше на Земле жили «чудесные существа многих типов и отличные друг от друга». Порождены ли все эти существа человеческой фантазией — или на нашей планете действительно некогда жили все эти монстры? Да, жили — утверждает Деникен в своей захватывающей книге. Какой корифей генной инженерии придумал их и создал? Остроумно соединяя предания с научными данными, писатель и исследователь уводит нас в особый мир, где реальность оказывается интереснее, чем вымысел.DIE AUGEN DER SPHINX by Erich von Deniken© 1989 by C. Bertelsmann Verlag, Munchen a division of Verlagsgruppe Random House GmbHИсключительное право публикации книги на русском языке принадлежит издательству «София»Перев. с англ. — К.: «София»© «София», 2003

Петр Немировский , Эрих фон Дэникен

История / Научная литература / Проза / Роман / Современная проза / Образование и наука